CONTENTS

INTRODUCTION

USE OF HOOK CODES

EXTENSIONS TO BASIC

Basic loader program

Assembler Listings

Main program

A simple ‘double POKE’ routine: POKE * x,y

Pokeing strings into memory: POKE n,”s”

Memory dump: *L n

Modified EDIT function: *E n

An improved sound command: BEEP *a,b,c,d

A faster and more complete catalogue: * CAT n

Pseudo—random file handling: READ #S,N

Adding data to a file: RESTORE #S

Extending the RS—232 channel

Extending Spectrum BASIC

THE SHADOW ROM DISASSEMBLY

The restart routines

The control routine

The syntax checking routines

The RS—232 link routines

The Network routines

The Microdrive routines

The ‘Hook code’ routines

The Microdrive command routines

The ‘not used’ routines

APPENDIX

Labels sorted by address value

Labels sorted alphabetically

‘Shadow’ system variables

Channels

Bibliography

Index to routines

Shadow ROM issue 2

How to tell which edition Interface 1 you have

Basic loader program for edition 2 Shadow ROM

Extended BASIC commands from assembler

for edition 2 Shadow ROM

What to do if you have an unknown ROM

�INTRODUCTION

The Sinclair ZX Interface I adds enormously to the power of the ZX Spectrum, allowing it to send and receive data over an RS—232 link, to use the Local Area Network, and to store information on the Microdrives. Equally impressive is its ability to expand the BASIC provided with the computer, adding new and powerful commands. Much of this power is due to the 8K monitor program which is housed in an 8K Read Only Memory in the Interface 1.

This ROM, which is kept between memory adresses 0000H and 1FFFH is "paged" back and forth with the main ROM so that both ROMs appear to occupy the same section of memory.

This book provides a complete listing of this program, fully commented and explained, permitting you to use these routines in your programs. In addition, many examples are given of how to expand the Spectrum's BASIC by using the Interface 1 to define new commands.

I feel that this book should be of interest to all users of the Interface 1. Those without experience in machine code programming can use the new BASIC commands provided, whether or not they own an assembler. More ambitious programmers will find numerous hints for the creation of the their own routines, and the algorithms controlling the Microdrive, the RS—232 link, and the Local Area Network will be of interest to even the most expert programmer.

I should like, finally, to thank Massimiliano, Carlo, Giovanna, Sylvia, and Mr. Alfred Milgrom (of Melbourne House Ltd.). A special thanks must go to the entire staff of Sinclair Research Ltd.

Gianluca Carri

Florence, Italy,

January 1985.

�USE OF HOOK CODES

While the disassembly of the ROM given here will be a valuable aid to machine code programmers wishing to use the Interface I, there is one problem: Sinclair Research have not used the same ROM in every Interface 1. There are two different editions of the ROM. Each, of course, does the same job of running the Microdrives, the RS—232 interface, and the Local Area Network, but there are a number of minor differences in the actual code contained in the ROMs. The differences between the two editions are described in appendix 7.

Does this mean that we can never rely on being able to write programs that can run on all machines? Far from it. Sinclair Research have provided a way to access a number of the ROM routines in a way which can be guaranteed to work on all machines. To do this, we use what are called hook codes. These consist of a RST 8 instruction followed by a byte whose value depends on which hook code you are using. Their effect is to page the ROM in, call a routine in the Interface 1's 'shadow ROM', then page the main ROM back in and return control to the users program. This provides 'transparant' access to the Interface 1 — the user doesn't need to know anything about the ROM, only about the various hook codes.

The following example shows the use of hook code 20H (which tests to see if a key has been pressed) from machine code:

		ORG	7D00H	;32000 dec

	EXAMPLE	RST	0008H	;hook code restart

		DEFB	20H	;check keypress

		RET

		END

To do the same thing from BASIC:

	POKE 32000,207: POKE 32001,32: POKE 32002,201: RANDONISE USR 32000

The hook codes available for your use are numbered from 1BH to 32H (27 to 50 decimal). The hook codes are all fully described in the disassembly, from 1981H to 1B6DH. If you use the hook codes within your programs, instead of calling

the shadow ROM subroutines, there will be no need to change your program if Sinclair make further changes to the ROM. Otherwise you will need to update all the absolute references to the shadow ROM.

In using hook codes, only the contents of the A register may be passed to the subroutines being called. The subroutines do not preserve any registers, so be sure to save all of the main set of registers before you use any hook codes. Some of the more complex routines corrupt HL', the return address to BASIC, so you may wish to preserve this.

Although the individual hook codes are dealt with in detail in the disassembly, here is a brief summary of their actions:

	1BH - Accepts a character from the keyboard.

	1CH - A character is output to stream 2, which is normally the upper part of the screen.

	1DH - Accepts a byte of data from the RS—232 link.

	1EH - Sends a byte of data to the RS—232 link.

	1FH - A character is output to stream 3, which is normally the ZX printer.

	20H - Tests for keypress.

The next twelve hook codes refer to the Microdrives.

	21H - Select drive. Can be used to turn any drive on, or all drives off.

	22H - Open channel. Allows the user to create a microdrive channel.

	23H - Close channel. The Microdrive channel is reclaimed.

	24H - Delete file. Used to erase a named file from a Microdrive channel.

	25H - Read sequential. Allows the user to fetch the 'next' record of a named file.

	26H - Write record. Writes a new record onto the next free sector of a microdrive cartridge.

	27H - Read random. Similar to 'read sequential', except that the record read need not be the next one in the file.

	28H - Reads a record from a specified sector of tape.

	29H - Reads the record from the next sector of tape that passes under the read head of the Microdrive.

	2AH - Writes a record to a specified sector of tape.

	2BH - Due to a programming error, this has the same effect as 'create channel' in the first issue ROM. This should be corrected in later issues.

	2CH - Reclaims the memory used by a Microdrive channel.

The following four hook codes refer to the local area network.

	2DH - Opens a network channel.

	2EH - Closes a network channel.

	2FH - Fetches a 'packet' of information from a network channel.

	30H - Sends a packet over a network channel.

	31H - Creates the new system variables used by the Interface 1. This happens when the system is powered up, and when NEW is typed, but it also can be done manually.

	32H - This routine is different from the other hook codes in that it can be used to call any routine in the shadow ROM. The shadow ROM is paged in, the routine whose address is held in the system variable HD-11 (held at address 5CEDH) is called, and the main ROM is paged back in.

Another use for hook code 32H is paging in the Shadow ROM. If you want the Shadow ROM to sit in main memory, where the main ROM normally is, and to be directly accessible to your program, use the following program fragment to page

the Shadow ROM in:

		LD	HL,LABEL

		LD	(23789),HL

		RST	8

		DEFB	32H

	LABEL	POP	HL

		POP	HL

To page the main ROM back in, simply do CALL 0700H

For more information about the hook codes and the ZX Interface 1, see the 'Spectrum Microdrive Book' by Dr. Ian Logan. also published by Melbourne House.

�EXTENSIONS TO BASIC

This section of the book shows how to add a number of new commands to the Spectrums BASIC. Those with no knowledge of machine code, or simply no interest in it can simply type the routines that follow into their Spectrums, save them

onto tape or Microdrive, and instantly have a more powerful BASIC. Machine code programmers will find the programs valuable examples of how to use the Interface 1 ROM routines, and should be interested by the way in which new commands are added to BASIC. A later section will explain how this is done.

The extensions to BASIC consist of a number of machine code routines, each of which makes up a new BASIC command, along with a main program which will prepare the computer to run the new commands.

The new BASIC includes improvements to the POKE, CAT, and BEEP commands, a better version of EDIT, more versatile file handling for the Microdrives, an extension to the RS—232 channel, and a useful memory dump command which will list the contents of an area of memory, in both hexadecimal and ASCII form.

Sinclair Research have released two different versions of the Interface 1. Each of the versions contains a slightly different program in its ROM. The newer version of the ROM has corrected a number of errors contained in the previous edition, as well as adding some new routines. Because new code has been added to

the Shadow ROM at various points, many of the routines in the ROM are no longer located at the same address as before. As the extensions to BASIC given in this book make use of many routines from the Shadow ROM, you will have to do slightly

different things to implement the BASIC extensions, depending on which edition of the Interface 1 you own.

First of all you'll have to figure out which edition of the Interface you own. Instructions on how to do this are given in Appendix 8 on page 155.

If you find you have an edition 1 ROM in your Interface 1, you will find instructions on how to add the new commands to Basic on page 11 for those who have an assembler, or on page 7 for those who don't have access to an assembler.

If you have an edition 2 ROM, then turn to Appendix 10 on page 161 if you have an assembler, or Appendix 9 on page 157 if you don't, for instructions on how to add the new BASIC commands to your Spectrum.

Although there are only two editions of the Shadow ROM at the moment, there is some possibility that Sinclair Research may release further editions of the Interface 1. Should you own one of these, it is likely that the extended BASIC

commands given here will not work properly with it. If the extended BASIC commands do not work for you, and you suspect that you might have a third edition or later Shadow ROM, turn to Appendix 11 on page 165 to find out how you can implement the new commands.

�Basic loader program

(For owners of Interface 1s equipped with the edition 1 ROM)

If you do not have an Assembler, you may enter the routines into your Spectrum with the following BASIC loader program.

Enter this program into your Spectrum.

	1	CLEAR 63743

	10	FOR A=63744 TO 65046 STEP 12

	20	PRINT "ADDRESS:";A''

	30	LET C=0

	40	FOR B=l TO 12

	50	LET Z=A+B-1: IF Z<=65046 THEN INPUT X: PRINT X: POKE Z,X: LET =C+X

	60	NEXT B

	70	PRINT '"CHECKSUM=";C

	80	INPUT "THIS IS WROMG ? (Y/N) ";LINE Y$: IF CODE Y$=89 OR CODE Y$=l2l THEN PRINT "Retype from address ";A: PAUSE 100: CLS: GO TO 20

	90	IF CODE Y$<>78 AND CODE Y$<>l10 THEN GO TO 80

	100	CLS: NEXT A

	110	PRINT "SAVING THE PROGRAM"

	120	SAVE *"M";1;"SHADP"CODE 63744,1303

When you have finished typing this program into the Spectrum, you should 'RUN' it. You should then type, from the listing on the next page, the 12 bytes from the address shown on the screen. When you have typed the first 12 bytes, a 'checksum' should be displayed on the screen; if it matches with the one printed on the listing, at the right—hand side of each line, then you have not made mistakes in typing the numbers, and you may enter "N" or "n" to continue with the next line. If the checksums do not match, you must enter 'y' or 'Y', and then retype the whole line.

When all numbers have been entered, the program will automatically be saved on Microdrive cartridge (there must be a cartridge with at least 2K free into Microdrive 1). IF you wish to save the program on tape, line 120 of the listing should be modified. When at later time you wish to use the routines, you have simply to place the cartridge into Microdrive I, and then to enter the following direct commands:

	CLEAR 63743: LOAD *"M";1;"SHADP"CODE: RANDOMIZE USR 63744

And the new commands should be available. Note that if you use NEW command, you must re—enter the command 'RANDOMIZE USR 63744' to reinitialise the VECTOR system variable.

�

	63744:	207	49	33	9	249	34	183	92	201	215	24	0	1296

	63756:	254	244	202	45	249	254	42	202	114	249	254	215	2324

	63768:	202	11	250	254	227	202	188	251	254	229	202	12	2282

	63780:	252	254	224	202	175	252	195	240	1	215	32	0	2042

	63792:	254	42	194	75	249	215	121	28	205	183	5	215	1786

	63804:	153	30	197	215	153	30	197	225	193	113	35	112	1653

	63816:	195	193	5	215	130	28	254	44	194	240	1	215	1714

	63828:	32	0	215	140	28	205	183	5	215	241	43	197	1504

	63840:	213	215	153	30	80	89	225	193	120	177	202	193	1890

	63852:	5	237	176	195	193	5	215	32	0	254	207	202	1721

	63864:	102	250	246	32	254	108	194	197	249	215	32	0	1879

	63876:	215	130	28	205	183	5	215	153	30	96	105	124	1489

	63888:	205	135	30	125	205	135	30	62	32	205	169	30	1363

	63900:	229	6	6	197	126	205	158	30	35	16	249	193	1450

	63912:	225	126	230	127	254	32	56	6	254	128	48	2	1488

	63924:	24	2	62	32	205	169	30	35	16	235	62	13	885

	63936:	205	169	30	24	202	254	101	194	240	1	215	32	1667

	63948:	0	215	130	28	205	183	5	215	153	30	253	203	1620

	63960:	12	126	202	240	1	120	230	192	194	240	1	237	1795

	63972:	67	73	92	237	123	61	92	33	7	250	229	42	1306

	63984:	61	92	229	33	127	16	229	237	115	61	92	253	1545

	63996:	54	0	255	215	169	15	33	56	15	229	199	225	1465

	64008:	195	180	18	215	32	0	254	42	194	240	1	215	1586

	64020:	121	28	254	44	194	240	1	215	121	28	205	183	1634

	64032:	5	215	148	30	245	215	148	30	167	40	54	79	1376

	64044:	6	0	197	215	148	30	167	40	44	79	6	0	932

	64056:	197	215	153	30	197	205	0	7	225	209	193	241	1872

	64068:	229	245	197	229	213	205	181	3	209	225	193	241	2370

	64080:	167	237	66	48	240	61	225	32	235	33	193	5	1542

	64092:	34	237	92	207	50	253	54	0	0	239	215	32 	1413

	64104:	0	205	30	6	205	183	5	205	109	6	62	2	1018

	64116:	215	1	22	205	232	15	221	126	25	205	247	23	1537

	64128:	205	196	18	33	9	251	17	24	0	205	5	251	1214

	64140:	205	65	19	32	239	33	9	251	203	78	32	232	1390

	64152:	58	9	251	33	12	251	182	230	2	194	169	250	1641

	64164:	205	254	18	24	215	58	13	251	183	40	209	58	1528

	64176:	10	251	183	32	203	221	126	41	221	190	13	40	1531

	64188:	22	205	33	251	205	0	251	221	126	13	183	194	1704

	64200:	128	250	221	126	41	221	119	13	195	128	250	221	1913

	64212:	229	175	205	247	23	205	0	251	221	229	225	17	2027

	64224:	44	0	25	205	178	251	205	0	251	205	56	29	1449

	64236:	123	203	63	215	40	45	215	227	45	205	0	251	1632

	64248:	221	225	205	196	16	195	193	5	62	13	195	102	1628

	64260:	29	229	195	173	24	0	0	0	0	0	0	0	650

	64272:	0	0	0	0	0	0	0	0	0	0	0	0	0

	64284:	0	0	0	0	0	33	140	92	54	255	33	13	620

	64296:	251	205	178	251	62	32	205	102	29	58	9	251	1633

	64308:	203	87	194	62	251	62	245	195	102	29	33	24	1487

	64320:	251	126	183	202	99	251	254	3	202	157	251	61	2040

	64332:	245	62	228	205	102	29	58	29	251	230	31	198	1668

	64344:	96	205	102	29	241	200	62	36	195	102	29	33	1330

	64356:	32	251	126	230	192	192	43	62	202	205	102	29	1668

	64368:	94	35	86	235	17	16	39	205	143	251	17	232	1370

	64380:	3	205	143	251	17	100	0	205	143	251	17	19	1345

	64392:	0	205	143	251	17	1	0	62	255	60	183	237	1414

	64404:	82	48	250	25	246	48	195	102	29	62	175	205	1467

	64416:	102	29	35	229	35	35	205	112	251	62	44	205	1344

	64428:	102	29	225	195	112	251	6	10	126	205	102	29	1392

�

	64440:	35	16	249	201	215	32	0	254	35	194	240	1	1472

	64452:	215	121	28	205	183	5	215	148	30	245	215	148	1758

	64464:	30	254	16	210	99	6	215	1	22	221	42	81	1197

	64476:	92	221	126	4	254	77	194	45	6	221	203	24	1467

	64488:	70	194	50	17	241	221	119	13	221	126	25	205	1502

	64500:	247	23	33	255	0	34	201	92	205	132	11	175	1414

	64512:	221	119	11	221	119	12	205	247	23	195	193	5	1571

	64524:	215	32	0	215	130	28	205	183	5	215	148	30	1406

	64536:	254	16	210	99	6	215	1	22	221	42	81	92	1259

	64548:	221	126	4	254	71	194	45	6	221	203	24	70	1445

	64560:	194	2	9	221	126	25	205	247	23	33	255	0	1340

	64572:	34	201	92	205	165	17	56	19	40	14	221	203	1267

	64584:	67	78	49	11	221	126	41	221	119	13	24	3	964

	64596:	205	254	18	205	18	19	32	227	219	239	230	1	1667

	64608:	202	197	26	205	75	26	218	163	17	221	110	69	1529

	64620:	221	102	70	221	117	11	221	116	12	221	203	24	1539

	64632:	198	205	62	30	205	196	18	221	126	13	221	190	1685

	64644:	41	32	245	62	230	211	239	1	104	1	205	250	1621

	64656:	24	221	229	225	11	55	0	25	205	120	24	62	1207

	64668:	238	211	239	205	254	18	221	126	68	221	119	13	1933

	64680:	175	205	247	23	195	193	5	215	32	0	254	33	1577

	64692:	40	1l	254	47	40	33	254	63	40	54	195	240	1271

	64704:	1	215	121	28	205	183	5	215	148	30	167	202	1520

	64716:	245	253	50	16	254	215	148	30	61	50	15	254	1591

	64728:	195	193	5	215	121	28	205	183	5	215	148	30	1543

	64740:	50	17	254	215	148	30	50	18	254	175	50	22	1283

	64752:	254	195	193	5	215	32	0	215	130	28	205	183	1655

	64764:	5	215	148	30	254	1	40	12	62	3	253	203	1226

	64776:	124	142	205	24	23	195	193	5	62	3	215	30	1230

	64788:	23	33	17	0	167	237	66	218	47	5	205	19	1037

	64800:	11	213	33	5	0	25	17	53	253	115	35	114	874

	64812:	62	3	50	216	92	209	195	74	11	254	165	210	1541

	64824:	64	12	253	203	1	134	254	32	56	85	32	4	1130

	64836:	253	203	1	198	245	62	1	50	19	254	241	205	1732

	64848:	60	12	58	15	254	71	58	14	254	184	48	5	1033

	64860:	60	50	14	254	201	205	105	253	175	50	19	254	1640

	64872:	201	62	1	50	19	254	61	50	14	254	58	20	1044

	64884:	254	167	196	90	12	58	21	254	167	196	90	12	1517

	64896:	58	18	254	71	58	22	254	60	184	32	8	58	1077

	64908:	17	254	167	196	90	12	175	50	22	254	201	254	1692

	64920:	13	32	12	58	19	254	167	62	1	50	19	254	941

	64932:	200	24	194	254	6	32	33	42	14	254	58	16	1127

	64944:	254	71	14	0	12	44	125	188	48	167	144	40	1107

	64956:	4	48	251	24	243	197	62	32	205	53	253	193	1565

	64968:	13	32	246	201	254	23	192	17	221	253	42	81	1575

	64980:	92	1	5	0	9	115	35	114	201	50	15	92	729

	64992:	17	229	253	24	237	17	53	253	205	210	253	58	1809

	65004:	15	92	71	58	15	254	184	48	5	253	54	0	1049

	65016:	10	239	58	14	254	144	200	48	5	237	68	79	1356

	65028:	24	187	197	205	105	253	193	72	24	179	0	80	1519

	65040:	20	12	60	1	13	10	0						116

�Assembler Listings

(For Interface 1s equipped with the edition 1 Shadow ROM.)

The following is a complete, fully commented assembler listing of the machine code programs which make the new BASIC commands possible. These consist of a main program which sets up the new system variables needed by the Interface 1, and a number of small programs, one of which is used by each new command. The equate statements used by these routines are included in a seperate table at the end of the listings. To add the new BASIC commands to your Spectrum, enter the assembler program on the following pages, as well as the table of EQU statements that follows it, into your assembler, assemble it, and save the resulting machine code on tape or microdrive. When you wish to use the new BASIC commands, load the machine code file into your Spectrum at 63744 (F900 Hex.), and do

	RANDOMIZE USR 63744

to make the new commands available.

All readers of this book should at least glance through this section, as interspersed with the listings of the new commands are examples of their use, and explanations of their functions. A brief explanation of the manner in which new commands are added to BASIC is given later in the book, and it may prove useful in understanding what is being done in this section.

�Main program

The program starts at the address F900 hex (63744 decimal), and is located above RAMTOP. When it is used for the first time, you must use a command

	RANDOMIZE USR 63744

to initialise the system variable VECTOR. You must do this whenever the initial VECTOR contents are defaulted back to ERR_6 (01F0). This happens when you use a NEW command to delete the BASIC program from the memory.

		ORG	0F900H

;

	MAINPG	EQU	$

;

		RST	ERROR_1	;Create new system variables if

		DEFB	HOOK31	;nonexistent.

		LD	HL,STSYN	;Store start address of new routine

		LD	(VECTOR),HL	;into VECTOR.

		RET

Note that initially 'hook code' +31 is used to create the new system variables if they do not already exist. Failure to do so in your programs will cause a probable crash when you try to POKE something into the location where the 'new' system variables should be.

The address of the syntax module routine STSYN is then stored into VECTOR. This causes the routine STSYN to be used whenever a command fails the syntax of the main ROM interpreter, and then that of the shadow ROM interpreter. The system variable CH_ADD will point to the first character of the command that produces the error.

The routine STSYN is listed below.

STSYN	RST	CALBAS

		DEFW	GET_CHAR	;Fetch command code.

		CP	POKE	;Jump to the appropriate routine,

		JP	Z,PGM1	;depending on the command code.

		CP	"*"

		JP	Z,PGM3

		CP	BEEP

		JP	Z,PGM5

		CP	READ

		JP	Z,PGM7

		CP	RESTORE

		JP	Z,PGM8

		CP	LPRINT

		JP	Z,PGM9

		JP	ERR_6	;Give an error if none of these.

Note that the 'main' ROM restart GET_CHAR is used to fetch the command code into the A register; then a jump is made to the required syntax module routine. If the command code is still wrong, the error is confirmed by jumping to ERR_6.

�A simple 'double POKE' routine: Poke * x,y

The first implemented 'new' command is a 'double POKE' command. That is, a POKE command that uses word operands (16 bits) instead of byte operands (8 bits). The syntax is 'POKE *x,y•, where 'a' is the address in the range 0..65535, and 'y' is the value to be poked at location 'a', again in the range 0..65535. Note that the standard Intel format is used, i.e. the low byte goes before the high byte in memory. You may use the new POKE command, for example, to store values into two—byte system variables:

	POKE *23675,32000

is a rather straightforward way of changing to '32000' the contents of the UDG system variable, as compared with the usual:

	POKE 23675,32000~256*INT (32000/256)

	POKE 23676,INT (32000/256)

The machine code program used to do this is very simple:

	PGM1	RST	CALBAS

		DEFW	NEXT_CHAR	;Advance CH_ADD.

		CP	"*"	;Jump if it is not a POKE *x,y command.

		JP	NZ,PGM2

		RST	CALBAS

		DEFW	NEXT_2NUM	;Evaluate the two parameters.

		CALL	ST_END	;Confirm end of statement.

		RST	CALBAS

		DEFW	FIND_INT2	;Fetch number to be POKEd.

		PUSH	BC	;Save it.

		RST	CALBAS

		DEFW	FIND_INT2	;Fetch address.

		PUSH	BC	;Move it into HL.

		POP	HL

		POP	BC	;Restore value.

		LD	(HL),C	;POKE the low byte.

		INC	HL

		LD	(HL),B	;POKE the high byte.

		JP	END1	;Finished.

Initially the syntax of the new command is checked; CH_ADD is advanced to the character that follows the token 'POKE', and if the character '*' is not present, a jump is made to the command for pokeing strings into memory (because the current command is not POKE *x,y).

Assuming that our current command is POKE *x,y, the 'main' ROM routine NEXT_2NUM is then used to evaluate two numeric expressions (separated by a comma), following the character pointed by CH_ADD. An error will occur if the

expressions have incorrect syntax. Otherwise the syntax is correct and the call to ST_END returns to the 'main' ROM during syntax checking. During runtime the execution continues, and the main ROM routine FIND_INT2 is used to fetch the values from the calculator stack. After the POKE * has been done, control is returned to the main ROM interpreter by jumping to END1.

�Pokeing strings into memory: POKE n,"s"

This command makes it possible to POKE a string in memory, starting from the address 'n'. For example, the statement:

	POKE 30000, "FRED BLOGGS"

Will POKE the ASCII values of the characters in the string "FRED BLOGGS", starting from the address 30000. You may check this by reading back the values with PEEK:

	FOR A=30000 TO 30010: PRINT CHR$ PEEK A;: NEXT A

Note that the routine fails the syntax of the interpreter by using a different parameter type (i.e. a string instead of a number), while the previous routine used a '*' character following the command code.

	PGM2	RST	CALBAS	;Evaluate the address.

		DEFW	EXPT_1NUM

		CP	COMMA	;A separator must be present.

		JP	NZ,ERR_6	;Report the error if it is not present.

		RST	CALBAS	;Advance CH_ADD.

		DEFW	NEXT_CHAR

		RST	CALBAS	;Evaluate string expression.

		DEFW	EXPT_EXP

		CALL	ST_END	;Confirm end of statement,

		RST	CALBAS	;Fetch string parameters.

		DEFW	STK_FETCH

		PUSH	BC	;Save 'length' and 'start'.

		PUSH	DE

		RST	CALBAS	;Fetch address.

		DEFW	FIND_INT2

		LD	D,B	;Move address into DE.

		LD	E,C

		POP	HL	;Restore string 'start' and 'length'.

		POP	BC

		LD	A,B	;Exit with null string.

		OR	C

		JP	Z,END1

		LDIR		;The actual POKE.

		JP	END1	;Finished.

The routine is entered from the POKE *x,y routine with CH_ADD pointing to the character following the 'POKE' token. The main ROM routines EXPT_ 1NUM and EXPT_EXP are then used, respectively to evaluate a numeric and a string

expression. A comma must be placed between them as separator. During runtime, the main ROM routines STK_FETCH and FIND_INT2 are used to fetch the string parameters, and the value of the numeric expression. No action is taken iF the

string has null length.

�Memorydump:	*L n

This routine creates a new command '*L n' that lists the memory contents, starting from the address n, in both hexadecimal and ASCII. Unprintable ASCII codes ate printed as spaces. For example, the following statement:

	*L 31920

Will list the contents of the memory starting from address 31920. Note that when dumping memory at addresses lower than 16384, the 'shadow' ROM code is shown. Try for example to dump from the address 695, that is the start of the 'shadow

ROM report messages table. The result will be as follows:

	02B7 00 50 72 6F 67 72 Progr

	02BD 61 6D 20 66 69 6E am fin

	02C3 69 73 68 65 64 01 ished

	02C9 41 6F 6E 73 65 6E Nonsen

	02CF 73 65 20 69 6E 20 se in

	02D5 42 41 53 49 43 02 BASIC

	

	

The routine follows:

	PGM3	RST	CALBAS	;Advance CH_ADD.

		DEFW	NEXT_CHAR	;Jump if the command is CAT.

		CP	CAT

		JP	Z,PGM6

		OR	20H	;Make the letter lower case.

		CP	"l"	;Jump if this is not an "*L" command.

		JP	NZ,PGM4

		RST	CALBAS

		DEFW	NEXT_CHAR	;Advance CH_ADD.

		RST	CALBAS

		DEFW	EXPT_1NUM	;Evaluate start address.

		CALL	ST_END	;Confirm end of statement.

		RST	CALBAS	;Fetch start address.

		DEFW	FIND_INT2

		LD	H,B	;Move it into HL.

		LD	L,C

	AGAIN	LD	A,H	;Display high byte of address in hex.

		CALL	DISP_HEX

		LD	A,L	;Display low byte.

		CALL	DISP_HEX

		LD	A,SPACE	;Print a space.

		CALL	DISP_CH

		PUSH	HL	;Save current address.

		LD	B,6	;Display 6 bytes.

		PUSH	BC	;Save counter for later,

	L_LOOP	LD	A,(HL)	;Fetch a byte.

		CALL	DISPHEX2	;Display it in hex.

		INC	HL	;Examine each byte in turn.

		DJNZ	L_LOOP

		POP	BC	;Restore counter and address.

		POP	HL

	C_LOOP	LD	A,(HL)	;Fetch a byte.

		AND	7FH	;Clear bit 7.

		CP	SPACE	;Reject codes lower than SPACE.

		JR	C,REJECT

		CP	80H	;Reject codes greater than 7FH.

		JR	NC,REJECT

		JR	ACCEPT

	REJECT	LD	A,SPACE	;Replace invalid codes with 'space'

				;code.

	ACCEPT	CALL	DISP_CH	;Print the character.

		INC	HL	;Advance pointer.

		DJNZ	C_LOOP	;Continue the toop.

		LD	A,CR	;Finally print a carriage return.

		CALL	DISP_CH

		JR	AGAIN	;Jump back.

This time, the interpreter syntax is failed by starting the command with a non—standard character, namely, a '*'. The letter 'L' (for 'L'ist) maybe either upper or lower case.

Note that the shadow ROM routines DISP_HEX, DISP_HEX2 and DISP_CH are used to print characters onto stream 2 (the screen). Note also that the command will never end during runtime. This, however, will not result in an endless loop, as you may simply press BREAK when the 'scroll' message is displayed on the screen, to stop the listing. The output may be directed to a device other than the screen by first using an OPEN command. i.e. OPEN #2,"T" will direct the output to the RS232 "T" channel.

The main ROM routines EXPT_1NUM and FIND_INT2 are used to evaluate and fetch the given parameter 'n'.

�Modified EDIT function: *E n

The normal 'EDIT' function is not very well implemented; if you wish, for example, to EDIT line 4385 of your program, you must first make the line 'current' by using something like LIST 4385, and then (after having pressed BREAK to stop the listing) press the EDIT key.

By using this routine, you may type simply '*E 4385' to do the same thing. The listing of the routine follows:

	PGM4	CP	"e"	;Error if it is not the '*E' command.

		JP	NZ,ERR_6

		RST	CALBAS	;Advance CH_ADD.

		DEFW	NEXT_CHAR

		RST	CALBAS	;Evaluate line number.

		DEFW	EXPT_1NUM

		CALL	ST_END	;Confirm end of statement.

		RST	CALBAS	;Fetch line number.

		DEFW	FIND_INT2

		BIT	7,(IY+PPC_HI)	;Accept only as 'direct' command.

		JP	Z,ERR_6

		LD	A,B	;Error with line number out of range.

		AND	0C0H

		JP	NZ,ERR_6

		LD	(E_PPC),BC	;Make this line 'current'.

		LD	SP,(ERR SP)	;Clear machine stack.

		LD	HL,ENDED	;Final return address.

		PUSH	HL

		LD	HL,(ERR_SP)	;Save current error address.

		PUSH	HL

		LD	HL,ED_ERROR	;The new error address.

		PUSH	HL

		LD	(ERR_SP),SP

		LD	(IY+ERR_NR),0FFH	;Clear the error.

		RST	CALBAS

		DEFW	ED_EDIT	;Copies the line into the editing area.

	LD	HL,ED_LOOP	;Return to 'EDitor LOOP', and to ENDED

		PUSH	HL	;below when finished.

		RST	MAIN_ROM

	;

	;NOTE: Main ROM in use.

	;

	ENDED	POP	HL	;Remove +l303 from the stack.

		JP	12B4H	;Jump back to the main execution loop.

Note that the command is rejected at runtime (BIT 7,PPC_HI) if it is not a 'direct' one: this is because an EDIT command used within a program does not make sense.

The command is also rejected if you specify wrong line numbers. If you use a nonexistent line number, the next existent number is used.

The routine enters the main ROM 'EDITOR' subroutine, after having copied the line into the editing area, and returns to the main execution loop when finished.

�An improved sound command: BEEP *a,b,c,d

The standard 'BEEP x,y'	command is very limited: it will only make sounds of a constant pitch. This routine creates a new 'BEEP' command that accepts four parameters, giving an endless range of possible sound effects.

The syntax of the new command is 'BEEP * a,b,c,d', where 'a' and 'b' are the values that the main ROM 'BEEPER' subroutine accepts as 'pitch' and 'length', 'c' is a 'step' value that will be subtracted from 'a' until it reaches zero, and 'd' is a 'repeat' value that defines how many times the whole sound must be made. Try the following statement:

	BEEP * 100,255,10,1

The following BASIC program will generate a wide range of sounds:

	10	LET a=RND*1000+10

	20	LET b=RND*6+1

	30	LET c=RND*50+1

	40	LET d=RND*3+1

	50	BEEP *a,b,c,d

	60	GO TO 10

The routine is listed below:

	PGM5	RST	CALBAS	;Advance CH_ADD.

		DEFW	NEXT_CHAR

		CP	"*"	;The '*' must be present.

		JP	NZ,ERR_6

		RST	CALBAS	;Evaluste 'a','b'

		DEFW	NEXT_2NUM

		CP	COMMA	;A separator must be found after 'b'.

		JP	NZ,ERR_6

		RST	CALBAS	;Evaluate 'c','d'.

		DEFW	NEXT_2NUM

		CALL	ST_END	;Confirm end of statement.

		RST	CALBAS	;Fetch 'd'.

		DEFW	FND_INTl

		PUSH	AF	;Save it.

		RST	CALBAS	;Fetch 'c'.

		DEFW	FND_INTl

		AND	A	;Give an error if c=0.

		JR	Z,RANGE

		LD	C,A	;Otherwise move it into BC.

		LD	B,0

		PUSH	BC	;Save it.

		RST	CALBAS	;Fetch 'b'.

		DEFW	FND_INT1

		AND	A	;Give an error if b=0.

		JR	Z,RANGE

		LD	C,A	;Move it into BC.

		LD	B,0

		PUSH	BC	;Save 'b' briefly.

		RST	CALBAS	;Fetch 'a'.

		DEFW	FIND_INT2

		PUSH	BC	;Save it temporarily.

		CALL	UNPAGE	;Use main ROM.

		POP	HL	;Restore	'a', 'b', 'c' and 'd' values.

		POP	DE

		POP	BC

		POP	AF

	LOOP2	PUSH	HL	;Save 'a'	for next pass.

	LOOP1	PUSH	AF	;Save values.

		PUSH	BC

		PUSH	HL

		PUSH	DE

		CALL	BEEPER	;Emit a sound.

		POP	DE	;Restore values.

		POP	HL

		POP	BC

		POP	AF

		AND	A

		SBC	HL,BC	;Subtract 'step' from 'a'.

		JR	NC,LOOP1	;Continue while subtraction possible.

		DEC	A	;Decrease 'd'

		POP	HL	;Restore 'a' for repetition.

		JR	NZ,L00P2	;Repeat the sound until d=0.

		LD	HL,END1	;Note how the return is made to the

		LD	(HD_11),HL	;shadow ROM.

		RST	ERROR_1

		DEFB	HOOK32

	;

	RANGE	LD	(IY+ERR_NR),0	;Call the error handling routine.

		RST	ROMERR

Note that 'b', 'c' and 'd' must be in the range l..255, ('d' may be set to 8, but this will give the same effect that you would expect from a value of 256.)

Be careful that you choose the right length for your sound, as the the BREAK key will not work in the middle of a sound.

If you have some difficulty in choosing the correct 'a' and 'b' values, you may calculate them as shown below:

	a = 437500/frequency-30.l25

	b = frequency * time

	(frequency=Hz, time=sec.)

You may also use the following BASIC program which calculates the values for A and B, starting from the 'x', 'y' values used in a normal BEEP command. For example, the sound obtained with BEEP 0.01,10 requires '908' and '4' as A and B

values.

	10	DATA 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.99, 392, 415.3, 440, 466.16, 493.88

	20	INPUT "TIME (SEC.) ? ";t

	30	INPUT "PITCH ? ";p

	40	LET i=INT p: LET pi=p-i

	50	LET pk=(pi*.0577622606)+1

	60	LET a=i+60: LET b=-6

	70	LET b=b+1: LET a~a-12

	80	IF SGN a()-1 THEN GO TO 70

	90	LET a=a+l2

	100	RESTORE: FOR x=0 TO a: READ c: NEXT x

	110	LET f=(pk*c)*2-b: IF f*t=0 THEN PRINT "ERROR": STOP

	120	PRINT "A=";INT (437500/f-30.125)'"B=";INT (f*t)

�A faster and more complete catalogue:* CAT n

After some 'general purpose' commands come some more complicated routines that use the new Interface's devices. This routine adds a new command '* CAT n' that gives a full catalogue of a cartridge held in the microdrive 'n'.

The command runs about 2—3 seconds faster than the standard 'CAT n' command, does not limit the output to 59 names, and provides information on the nature of the file, its length, etc., that is not given when the standard 'CAT' command is used.

Since the names are printed as they are found on the cartridge, the list is not alphabetically ordered.

Along with each filename the following information will appear:

'PRINT'	If it is a PRINT—type file.

'CODE sssss,nnnnn'	If it is a 'bytes' file; 'sss' and 'nnn' are respectively

	the start address and the length of the file.

'DATA x'	If it is a numeric array named 'x'.

'DATA x$'	If it is a string array named 'x$'

'LINE nnnnn'	If it is a BASIC program with autostart at line 'nnn'.

If nothing is printed after the filename, then the file is a normal BASIC program saved without the autostart.

The routine is listed below.

	PGM6	RST	CALBAS	;Advance CH_ADD.

		DEFW	NEXT_CHAR

		CALL	EXPT_NUM	;Evaluate drive number.

		CALL	CHECK_M_2	;Check range of drive number.

		CALL	ST_END	;Confirm end of statement.

		LD	A,2	;Use stream 2 (screen).

		RST	CALBAS

		DEFW	CHAN_OPEN

		CALL	SET_T_MCH	;Create a temporary "m" channel.

		LD	A,(IX+CHDRIV)	;Turn on drive motor.

		CALL	SEL_DRIVE

	CATLOOP	CALL	GET_M_HD02	;Get a header.

		LD	HL,RDESC	;And a record descriptor from the address

		LD	DE,18H	;RDESC.

		CALL	GETD

		CALL	CHKS_HD R	;Repeat until the checksum is correct.

		JR	NZ,CATLOOP

		LD	HL,RDESC	;Repeat also if loaded wrong block type

		BIT	0,(HL)	;(header).

		JR	NZ,CATLOOP

		LD	A,(RDESC)	;Jump forward with 'not free' sectors.

		LD	HL,RDESC+3

		OR	(HL)

		AND	2

		JP	NZ,PRI_NA

		CALL	RES_B_MAP	;Mark 'free' sectors.

		JR	CATLOOP

	;

	PRI_NA	LD	A,(RDESC+4)	;Ignore names starting with CHR$ 0.

		OR	A

		JR	Z,CATLOOP

		LD	A,(RDESC+1)	;Ignore other than first records.

		OR	A

		JR	NZ,CATLOOP

		LD	A,(IX+HDNUMB)	;Jump forward when the whole tape has

		CP	(IX+CHREC)	;been examined.

		JR	Z,ENDCAT

		CALL	OUTNAM	;Examine current record.

		CALL	PRCR	;Print a carriage return.

		LD	A,(IX+CHREC)	;Jump unless first time (CHREC=0).

		OR	A

		JP	NZ,CATLOOP

		LD	A,(IX+HDNUMB)	;Store current sector number (to

		LD	(IX+CHREC),A	ldetect when the whole tape has been

		JP	CATLOOP	;examined).

	;

	ENDCAT	PUSH	IX	;Save channel start address.

		XOR	A	;Turn off drive motors.

		CALL	SEL_DRIVE

		CALL	PRCR	;Leave a blank line.

		PUSH	IX	;Make HL point to HDNANE.

		POP	HL

		LD	DE,2CH

		ADD	HL,DE

		CALL	PRNANE	;Print cartridge name.

		CALL	PRCR	;Print a carriage return.

		CALL	FREESECT	;Fetch number of 'free' sectors.

		LD	A,E

		SRL	A	;A holds the number of Kbytes left.

		RST	CALBAS	;Store this number on calculator stack.

		DEFW	STACK_A

		RST	CALBAS	;Print the number on the screen.

		DEFW	PRINT_FP

		CALL	PRCR	;Final carriage return.

		POP	IX	;Restore channel start address.

		CALL	DEL_M_BUF	;Reclaim the channel.

		JP	END1	;Finished.

	;

	PRCR	LD	A,CR	;Print a carriage return.

		JP	PRCHAR

	;

	GETD	PUSH	HL	;Save start address.

		JP	GT_M_BLK	;Fetch descriptor and header information.

	;

	RDESC	DEFB	l8H	;Space to store record descriptor.

	;

	OUTNAM	LD	HL,SCR_CT	;Suppresa scrolling.

		LD	(HL),0FFH

		LD	HL,RDESC+4	;Print record name.

		CALL	PRNAME

		LD	A,SPACE	;Follow it with a space.

		CALL	PRCHAR

		LD	A,(RDESC)	;This is 'RECFLG'.

		BIT	2,A	;Jump if this is not a

		JP	NZ,NOTPRINT	;'PRINT—type' file.

		LD	A,PRINT	;Otherwise print the keyword 'PRINT'.

		JP	PRCHAR

	;

		LD	A,(HL)

		OR	A	;Jump with type=0 (program files).

		JP	Z,PROG

		CP	3	;Jump with type=3 (bytes).

		JP	Z,BYTES

		DEC	A	;Save zero flag (set with numeric

		PUSH	AF	;arrays).

		LD	A,DATA	;Print the keyword DATA.

		CALL	PRCHAR

		LD	A,(RDESC+20)	;Fetch array name.

		AND	1FH	;Clear bit 5,6,7.

		ADD	A,60H	;Obtain an ASCII code.

		CALL	PRCHAR	;Print array name.

		POP	AF	;Return with numeric arrays.

		RET	Z

		LD	A,"$"	;But print '$' with string arrays.

		JP	PRCHAR

	;

	PROG	LD	HL,RDESC+23	;Fetch high byte of autostart line no.

		LD	A,(HL)

		AND	0C0H	;Return if no autostart was specified.

		RET	NZ

		DEC	HL	;Point to the low byte.

		LD	A,LINE	;Print the keyword LINE, and then

		CALL	PRCHAR	;the line number:

	;

	FPRINT	LD	E,(HL)	;Fetch entry indirectly.

		INC	HL

		LD	D,(HL)

		EX	DE,HL	;Move value into DE.

	;

	PRNUM	LD	DE,10000	;Print first digit.

		CALL	PRDIG

		LD	DE,1000	;Print second digit.

		CALL	PRDIG

		LD	DE,100	;Print third digit.

		CALL	PRDIG

		LD	DE,10	;Print fourth digit.

		CALL	PRDIG

		LD	DE,1	;Print last digit.

	PRDIG	LD	A,-1	;Counter.

	OUTD	INC	A	;Increment the counter.

		OR	A	;Clear carry flag.

		SBC	HL,DE	;'Trial subtraction'.

		JR	NC,OUTD	;Continue until borrowing found.

		ADD	HL,DE	;Balance last SBC.

		OR	30H	;Make the counter an ASCII character

		JP	PRCHAR	;and print it.

	;

	BYTES	LD	A,CODE	;Print the keyword CODE.

		CALL	PRCHAR

		INC	HL	;Save pointer to 'length'.

		PUSH	HL

		INC	HL

		INC	HL

		CALL	FPRINT	;Print the 'start'.

		LD	A,COMMA	;Print a comma.

		CALL	PRCHAR

		POP	HL	;Finally print the 'length'.

		JP	FPRINT

	;

	PRNAME	LD	B,10	;Counts ten characters.

	PRLOOP	LD	A,(HL)	;Fetch character,

		CALL	PRCHAR	;Print it.

		INC	HL	;Advance the pointer.

		DJNZ	PRLOOP	;Loop for the whole name.

		RET

The routine can be divided into eleven different sections:

1.	A 'temporary "m" channel' and map is created in the CHANS area.

2.	The required Microdrive is turned on.

3.	The current sector number is stored into CHREC.

4.	A 'header' is loaded from the cartridge into the "m" channel header area.

5.	The 'record descriptor' and the 'header informations' are loaded into the RDESC area.

6.	If the 'header' indicates 'free' sector, the appropriate map bit is reset and the program loops back to step (4)

7.	The filename and the various information are taken from the RDESC area and printed on the screen.

8.	The program continues looping back to (4) until the whole tape has been examined; this is done by comparing the current sector number against CHREC one.

9.	The cartridge name is taken from HDNAME and printed.

10.	The number of 'free sectors' is used to print the number of Kbytes left in the cartridge.

11.	The Microdrive motor is turned off, and the channel is reclaimed.

Names starting with CHR$ 18 are not printed; records other than 'first' ones are not examined, so as to avoid the printing of a filename more than once.

Note that the form *CAT #S;N is not supported, because there is not sufficient time to send the information fetched to a channel other than the screen, before the next tape sector is due to be examminined. If you wish to direct the catalogue to a printer, you must use first a command such as:

	OPEN #2;"m";d;"CAT"

and then use the *CAT n command. Finally 'CLOSE #2' will send the catalogue to the Microdrive. It can then be printed with either:

	MOVE "m";d;"CAT" TO #3	(with the ZX printer)

	MOVE "m";d;"CAT" TO "b"	(with RS232 printers)

The catalogue can then be erased with ERASE "m";n;"CAT" (where 'n' is the drive number).

In this case, you must take care that the output of the catalogue will not require more than 512 characters to be printed (otherwise unpredictable results may occur when the Spectrum tries to send the record to the Microdrive while the CAT command is operative). This can be done by making sure that there are fewer than 20 files on the cartridge.

Note that to fail the syntax of the interpreter, the command begins with a '*' character; the command may not begin with a 'new' command token, such as CAT, SAVE, ERASE, CLS, etc.

�Pseudo-random file handling: READ #S,N

This command will permit a 'pseudo—random' handling of Microdrive files. When READ #S,N is executed, the 'read' Microdrive channel attached to the stream 'S' is used, and record 'n' of that file is loaded into the channel buffer.

Since the Microdtive system splits the main 'PRINT—type' files into records 512 bytes long, you may write items with 'length=512', thereby having each record contain a single item, and then read back that item with the READ #S,N command.

Such an application is shown by using the following BASIC program. Each item is made by 8 elements (length=63 characters + carriage return) of an array, exactly 512 bytes.

Without the READ #S,N command you have to read sequentially all items before reaching the desired one.

	10	DIM a$(24,63)	

	20	REM Some data for the file

	30	DATA "THE MICRODRIVES", "give you fast access to a large memory.", "", "Each Microdrive can hold up to 100 Kbytes on a single", "removable cartridge.", "Note that the Microdrive nearest the computer is always known as", "Microdrive 1, and the next along is Microdrive 2, and so on.", "There is also a light on the front of each Microdrive."

	40	DATA "THE CARTRIDGES", "come in a protective box; and should always be kept in their", "box when not in use.", "But remember...", "Never take the cartridge out of the Microdrive while the light", "is on.", "Never switch the power on or of while a cartridge is in the", "Microdrive."

	50	DATA "THE NETWORK", "enables you and your friends to play computer games together", "and to send each other programs and data.", "This means that only one of you need ever type in a program.", "Using the lead supplied with each Interface you can link up", "as few as two and as many as 64 Spectrum computers."

	60	OPEN #4;"M";1;"FILE"

	70	FOR a=l TO 24: READ a$(a): NEXT a

	80	CLOSE	#4

	90	CLEAR: REM The file has been cleared.

	100	OPEN #4;"M";1;"FILE"

	110	CLS: PRINT "Press a key for your choice: "''"0. MICRODRIVES"''"l. CARTRIDGES"''"2. NETWORK"''"3. STOP"

	120	PAUSE 0: LET a$=INKEY$; IF a$<"0" OR a$>"3" THEN GO TO 110

	130	IF a$="3" THEN CLOSE #4: STOP

	140	READ #4,VAL a$

	150	CLS: FOR a=1 TO 8: INPUT #4;a$: PRINT a$: NEXT a

	160	PAUSE 0: GO TO 110

If the stream(s) specified in the command is not opened, the error "invalid stream" will occur. "Invalid device expression" will occur if the stream is not attached to an "m" channel; "Reading a 'write' file" will occur if the channel is opened for writing.

The cartridge is simply searched for the 'n'th record of the file 'n' being in range 0..255), then it is loaded and CHBYTE cleared so as to direct INKEY$ and INPUT commands to the first byte loaded.

If the record is not found, or if any reading error occurs, the error 'File not found' will be reported. The listing of the routine follows.

	PGM7	RST	CALBAS	;Advance CH_ADD.

		DEFW	NEXT_CHAR

		CP	"#"	;A hash sign must be present

		JP	NZ,ERR_6	;after READ.

		RST	CALBAS	;Evaluate 's','n'

		DEFW	NEXT_2NUM

		CALL	ST_END	;Confirm end of statement.

		RST	CALBAS	;Fetch 'n'.

		DEFW	FND_INT1

		PUSH	AF	;Save it for later.

		RST	CALBAS	;Fetch 's'.

		DEFW	FND_INT1

		CP	10H	;Give an error if 's' is greater than 15

		JP	NC,NREPORT-2

		RST	CALBAS

		DEFW	CHAN_OPEN	;Use this stream.

		LD	IX,(CURCHL)	;Fetch channel start address.

		LD	A,(IX+4)	;Fetch channel specifier.

		CP	"M"	;Error if not an "M" channel.

		JP	NZ,NREPORT—3

		BIT	0,(IX+CHFLAG)	;Error if the file is opened for

		JP	NZ,RWF—ERR	;writlng.

		POP	AF	;Store record number into CHREC.

		LD	(IX+CHREC),A

		LD	A,(IX+CHDRIV)	;The drive motor is turned on.

		CALL	SEL_DRIVE

		LD	HL,0FFH	;Counts 255 sectors.

		LD	(SECTOR),HL

		CALL	GET_R_LP	;Fetch record.

		XOR	A	;C1ear CHBYTE.

		LD	(IX,CHBYTE),A

		LD	(IX+CHBYTE+1),A

		CALL	SEL_DRIVE	;Switch off drive motor.

		JP	END1	;Finished.

�Adding data to a file: RESTORE #S

Normally, if you try to write data onto a Microdrive file that has previously been CLOSEd, the error 'Writing to a 'read' file' will occur. This makes the operation of extending a file with more data difficult, as one has to create a new file, copy into it the 'old' one and the 'new' data, and then erase the 'old' file. This is not easy, and is a very slow process.

This command will convert the 'read' file attached to the stream 's' back to a 'write' file, thus permiting the addition of more data. When you have finished adding data, you may CLOSE the stream that returns a 'read' file. You may use RESTORE #S again to convert it into a 'write' file if you wish.

The following BASIC program will demonstrate this.

	5	PRINT "CREATING THE FILE"

	10	OPEN #4;"M";1;"NUMBERS"

	20	FOR N=1 TO 10

	30	PRINT #4;N'N*N

	40	NEXT N

	50	CLOSE #4

	60	PRINT '"READING THE FILE"

	70	OPEN #4;"M";l;'NUMBERS"

	80	PRINT

	90	FOR B=1 TO 10

	100	INPUT #4;M;N

	110	PRINT "THE SQUARE OF ";M;" IS ";N

	120	NEXT B

	130	PRINT '"EXTENDING THE FILE"

	140	RESTORE #4

	150	FOR N=11 TO 20

	160	PRINT #4;N'N*N

	170	NEXT N

	180	CLOSE #4

	190	PRINT '"READING EXTENDED FILE"

	200	OPEN #4;"M";1;"NUMBERS"

	210	PRINT

	220	FOR B=l TO 20

	230	INPUT #4;M;N

	240	PRINT "THE SQUARE OF ";M;" IS ";N

	250	NEXT B

	260	CLOSE	#4

The routine is as folllows:

	PGM8	RST	CALBAS	;Advance CH_ADD.

		DEFW	NEXT CHAR

		RST	CALBAS

		DEFW	EXPT_1NUM	;Evaluate stream number.

		CALL	ST_END	;Confirm end of statement.

		RST	CALBAS	;Fetch stream number.

		DEFW	FND_INT1

		CP	10H	;Reject stream number > 15.

		JP	NC,NREPORT-2

		RST	CALBAS	;Use this stream.

		DEFW	CHAN_OPEN

		LD	IX,(CURCHL)	;Fetch channel start address.

		LD	A,(IX+4)	;Fetch channel specifier.

		CP	"M"	;Error if not an "m" channel.

		JP	NZ,NREPORT—3

		BIT	0,(IX+CHFLAG)	;Error also with 'write' files.

		JP	NZ,NREPORT—N

		LD	A,(IX+CHDRIV)	;Turn on drive motor.

		CALL	SEL_DRIVE

		LD	HL,0FFH	;Counts through 255 sectors.

		LD	(SECTOR),HL

	LOOP	CALL	G_HD_R	;Fetch header and data block.

		JR	C,NXTS	;Jump with any error.

		JR	Z,RESBIT	;Jump with 'free' sectors.

		BIT	1,(IX+RECFLG)	;Jump if this is not the last record in

		JR	Z,NXTS	;the file.

		LD	A,(IX+HDNUMB)	;Otherwise fetch sector number to CHREC.

		LD	(IX+CHREC),A

		JR	NXTS

	RESBIT	CALL	RES_B_MAP	;Mark 'free' sector.

	NXTS	CALL	DEC_SECT	;Continue until the whole tape has been

		JR	NZ,LOOP	;examined.

		IN	A,(0EFH)	;Error with write—protected cartridge.

		AND	1

		JP	Z,RS—SH

		CALL	RD_SECTOR	;Fetch the EOF record.

		JP	C,RS—SH2	;Error with wrong checksum.

		LD	L,(IX+RECLEN)	;Use RECLEN as current position.

		LD	H,(IX+RECLEN+l)

		LD	(IX+CHBYTE),L

		LD	(IX+CHBYTE+1),H

		SET	0,(IX+CHFLAG)	;Make this a 'write' file.

		CALL	IN_CHK	;Set 'free sector' descriptor.

	SLOOP	CALL	GET_M_HD02	;Fetch a header block.

		LD	A,(IX+CHREC)	;Continue if this is not the one.

		CP	(IX+HDNUMB)

		JR	NZ,SLOOP

		LD	A,0E6H	;Start writing.

		OUT	(0EFH),A

		LD	BC,0168H	;Wait to create a first gap.

		CALL	DELAY_BC

		PUSH	IX	;Make HL point to data block preamble.

		POP	HL

		LD	DE,37H

		ADD	HL,DE

		CALL	OUT_M_BUF	;Erase this sector.

		LD	A,0EEH	;'End of writing' signal.

		OUT	(0EFH),A

		CALL	RES_B_MAP	;Mark 'free' this sector,

		LD	A,(IX+RECNUM)	;Copy RECNUM into CHREC.

		LD	(IX+CHREC),A

		XOR	A	 Switch off drive motor.

		CALL	SEL_DRIVE

		JP	END1	;Finished.

The steps involved in doing the RESTORE #S command are as follows:

1.	A 'Microdrive map' is set—up, for use when the channel is made a 'write' channel.

2.	The last record of the file is loaded into the channel area.

3.	That record is erased from the cartridge.

4.	The channel is marked 'write channel'.

As with the READ #S,N command, errors are reported if the stream 'S' is closed, or if it is opened with other than "m" channel, or with "m" channels opened for writing.

�Extending the RS-232 channel

This routine creates three new commmands for time user who has an RS232 printer connected to their Spectrum.

Time first command is LPRINT ? n. If n=1, a new RS232 channel is opened, so subsequent LPRINT and LLIST commands will use this for their outputs. If n=0, the "p" channel is defaulted for the LPRINT and LLIST Commands (the ZX Printer).

The channel opened has more features than the normal "t" channel. The TAB function and the comma are supported on the printer, the 'leading space bug' present with the "t" channel has been corrected, the CR and LF codes are re—definable, an auto CR feature is supported, and finally a re—definable form—feed code is sent after a certain amount of lines printed, so as to advance to the next page before the printing head reaches the end of the sheet.

The second command is LPRINT ! x,y. The parameter 'x' will define the width of the line. If, for example, you specify a width equal to 32, the standard Spectrum screen format is used. A width of 40, 80, 132 columns, or other, is suitable depending on your choice, and on the maximum width that your printer allows. The parameter 'y' will define the number of columns used as step when printing the 'comma' control code. The default value for 'x' and 'y' are 80 and 20.

The last command is LPRINT / x,y. In this case, 'x' will define the number of lines that will be printed before the form feed code (which advances to the next page) is sent to the printer (default=60, suitable for 66—line sheets). The parameter 'y' is the form—feed code that your printer accepts; the standard value is 12. You may store codes other than form—feed, such as linefeed, etc., to obtain different results when the 'x' lines have been printed.

The CR code is sent as 'CR' followed by 'LF' (Line Feed). If your printer does not need the LF code, you may end up with a double spacing between lines; the problem may be eliminated with POKE 65045,0.

The assembly code for our final extension to BASIC is listed below.

	PGM9	RST	CALBAS	;Advance CH_ADD.

		DEFW	NEXT CHAR

		CP	"!"

		JR	Z,OUT1	;Jump with LPRINT !x,y

		CP	"/"

		JR	Z,OUT2	;Jump with LPRINT /x,y

		CP	"?"

		JR	Z,OUT3	;jump with LPRINT ?n

		JP	ERR_6	;Error if none of these.

	;

	OUT1	RST	CALBAS	;Evaluate 'x,y'.

		DEFW	NEXT_2NUM

		CALL	ST_END	;Confirm end of statement.

		RST	CALBAS	;Fetch 'y'.

		DEFW	FND_INT1

		AND	A	;Reject spacing=0.

		JP	Z,OTRNG

		LD	(CMMSP),A	;Store this value.

		RST	CALBAS	;Fetch 'x'.

		DEFW	FND_INT1

		DEC	A	;Range of 'x' is from 0 onwards.

		LD	(WIDTH),A	;Store the value.

		JP	END1	;Finished.

	;

	OUT2	RST	CALBAS	;Evaluate 'x,y'

		DEFW	NEXT_2NUM

		CALL	ST_END	;Confirm end of statement.

		RST	CALBAS	;Fetch 'y'

		DEFW	FND_INT1

		LD	(FFC),A	;Store it.

		RST	CALBAS	;Fetch 'x'.

		DEFW	FND_ NT1

		LD	(LPAGE),A	;Store it.

		XOR	A

		LD	(CLINE),A	;Clear line counter.

		JP	END1	;Finished.

	;

	OUT3	RST	CALBAS	;Advance CH_ADD.

		DEFW	NEXT_CHAR

		RST	CALBAS

		DEFW	EXPT_1NUM	;Evaluate 'n'

		CALL	ST_END	;Confirm end of statement.

		RST	CALBAS	;Fetch 'n'

		DEFW	FND_INT1

		CP	1

		JR	Z,NEWOUT	;Open new channel if n=1.

		LD	A,3	;Otherwise stream 3 reverts to "p"

		RES	1,(IY+FLAGS3)	;channel.

		CALL	CLOSE

		JP	END1	;Finished.

	;

	NEWOUT	LD	A,3

		RST	CALBAS

		DEFW	STR_DATA1	;Fetch current stream data.

		LD	HL,11H

		AND	A

		SBC	HL,BC

		JP	C,NREPORT—C	;Error if stream is already opened.

		CALL	OP_RS_CH	;Open a "t" channel.

		PUSH	DE	;Save stream data.

		LD	HL,5	;Make HL point to 'address of output

		ADD	HL,DE	;routine'.

		LD	DE,NRSOUT	;Change this address to NRSOUT below.

		LD	(HL),E

		INC	HL

		LD	(HL),D

		LD	A,3	;Use stream 3.

		LD	(5CD8H),A

		POP	DE	;Restore stream data.

		JP	OP_STREAM	;Attach channel to a stream.

	;

	NRSOUT	CP	0A5H	;Use shadow ROM routine with token codes.

		JP	NC, TCHAN—OUT+4

		RES	0,(IY+FLAGS)	;Clear 'leading space' flag.

		CP	SPACE	;Jump forward with control codes lower

		JR	C,CTRL	;than 20H.

		JR	NZ,NOSPC	;Jump if not a space.

		SET	0,(IY+FLAGS)	;Otherwise set 'leading space' flag.

	NOSPC	PUSH	AF	;Save the code temporarily.

		LD	A,1	;Accept next CR code.

		LD	(CLRCR),A

		POP	AF	;Restore the code.

		CALL	TCHAN_OUT	;Use "t" channel to print it,

		LD	A,(WIDTH)

		LD	B,A

		LD	A,(POSN)

		CP	B

		JR	NC,NLIN	;Jump if POSN>WIDTH.

		INC	A	;Otherwise increment POSN.

		LD	(POSN),A

		RET

	;

	NLIN	CALL	ENDLI	;Advance to next line.

		XOR	A	;Disable next CR code.

		LD	(CLRCR),A

		RET

	;

	ENDLI	LD	A,1	;Accept next CR code.

		LD	(CLRCR),A

		DEC	A

		LD	(POSN),A	;Clear POSN.

		LD	A,(CRCD)	;Fetch CR code.

		AND	A

		CALL	NZ,BCHAN_OUT	;Send it unless zero.

		LD	A,(LFEED)	;Fetch LF code.

		AND	A

		CALL	NZ,BCHAN_OUT	;Send it unless zero.

		LD	A,(LPAGE)

		LD	B,A

		LD	A,(CLINE)

		INC	A

		CP	B

		JR	NZ,NOFEED	;Jump if not the end of the page.

		LD	A,(FFC)	;Fetch form feed code.

		AND	A

		CALL	NZ,BCHAN_OUT	;Send it unless zero.

		XOR	A

	NOFEED	LD	(CLINE),A	;Store new line number.

		RET

	;

	CTRL	CP	CR	;Jump if the code is not CR.

		JR	NZ,NOCR

		LD	A,(CLRCR)

		AND	A	;Check current state of CR flag.

		LD	A,1	;Reset flag to 1 for later.

		LD	(CLRCR),A

		RET	Z	;Do not do a CR if CLRCR=0.

		JR	ENDLI	;Otherwise loop back.

	;

	NOCR	CP	PRCOMMA	;Jump if not a comma.

		JR	NZ,NOCOMMA

		LD	HL,(POSN)	;L= POSN H= WIDTH

		LD	A,(CMMSP)

		LD	B,A

		LD	C,0

	ONESPC	INC	C	;Increment counters.

		INC	L

		LD	A,L

		CP	H

		JR	NC,NLIN	;Jump if POSN>=WIDTH.

	CHKPOS	SUB	B	;Jump if reached the correct place, or

		JR	Z,SPLOOP	;continue if not.

		JR	NC,CHKPOS

		JR	ONESPC

	;

	SPLOOP	PUSH	BC	;Print 'C' spaces by calling recursively

		LD	A,SPACE	;this routine.

		CALL	NRSOUT

		POP	BC

		DEC	C

		JR	NZ,SPLOOP

		RET

	;

	NOCOMMA	CP	TAB	;Return if not the TAB code.

		RET	NZ

		LD	DE,PAR1	;Alter output address.

	;

	ALTOP	LD	HL,(CURCHL)

		LD	B,5

		ADD	HL,BC

		LD	(HL),E	;Store new output address.

		INC	HL

		LD	(HL),D

		RET

	;

	PAR1	LD	(TVDATA+1),A	;Store 'n'.

		LD	DE,PAR2	;Output address for next byte.

		JR	ALTOP

	;

	PAR2	LD	DE,NRSOUT	;Restore initial output address.

		CALL	ALTOP

		LD	A,(TVDATA+1)	;Fetch column 'n'.

		LD	B,A

		LD	A,(WIDTH)

		CP	B

		JR	NC,GOOD

	OTRNG	LD	(IY+ERR_NR),0AH	;Error if 'n' is greater than WIDTH.

		RST	ROMERR

	GOOD	LD	A,(POSN)

		SUB	B

		RET	Z	;Return if already in place.

		JR	NC,GRT	;Jump if POSN>'n'.

		NEG		;A=number of spaces required.

		LD	C,A

		JR	SPLOOP	;Jump back.

	GRT	PUSH	BC

		CALL	ENDLI	;First advance to next line.

		POP	BC

		LD	C,B

		JR	SPLOOP	;Jump back to insert the spaces.

	;

	POSN	DEFB	0

	WIDTH	DEFB	80

	CMMSP	DEFB	20

	FFC	DEFB	12

	LPAGE	DEFB	60

	CLRCR	DEFB	1

	CRCD	DEFB	CR

	LFEED	DEFB	0AH

	CLINE	DEFB	0

	;

		END

�

The EQU statements given here define all the labels referred to in the preceding program:

;

;Shadow ROM addresses

;

MAIN_ROM	EQU	00H

CALBAS	EQU	10H

SH_ERR	EQU	20H

ROMERR	EQU	08H

NEWVAR	EQU	30H

ERR_6	EQU	01F0H

NREPORT—C	EQU	052FH

ST_END	EQU	05B7H

END1	EQU	05C1H

EXPT_NUM	EQU	061EH

NREPORT—2	EQU	0663H

CHECK_M_2	EQU	066DH

NREPORT—3	EQU	062DH

UNPAGE	EQU	0700H

NREPORT—N	EQU	0902H

OP_RS_CH	EQU	0B13H

OP_STREAM	EQU	0B4AH

TCHAN_ OUT	EQU	0C3CH

BCHAN_OUT	EQU	0C5AH

SET_T_MCH	EQU	0FE8H

DEL_M_BUF	EQU	10C4H

RWF—ERR	EQU	1132H

GET_R_LP	EQU	1184H

RS—SH2	EQU	11A3H

G_HD_RC	EQU	11A5H

GET_M_HD2	EQU	12C4H

RES_B_MAP	EQU	12FEH

DEC_SECT	EQU	1312H

CHKS_HD_R	EQU	1341H

CLOSE	EQU	1718H

SEL_DRIVE	EQU	17F7H

OUT_M_BUF	EQU	1878H

GT_M_BLK	EQU	18ADH

DELAY_BC	EQU	18FAH

RD_SECTOR	EQU	1A4BH

RS—SH	EQU	1AC5H

FREESECT	EQU	1D38H

PRCHAR	EQU	1D66H

IN_CHK	EQU	1E3EH

DISP_HEX	EQU	1E87H

DISPHEX2	EQU	IE9EH

DISP_CH	EQU	1EA9H

;

;Main ROM addresses

;

ERROR_1	EQU	08H

GET_CHAR	EQU	18H

NEXT_CHAR	EQU	20H

BEEPER	EQU	03B5H

ED_LOOP	EQU	0F38H

ED_EDIT	EQU	0FA9H

ED_ERROR	EQU	107FH

CHAN_OPEN	EQU	1601H

STR_DATA1	EQU	1727H

NEXT_2NUM	EQU	1C79H

EXPT_1NUM	EQU	1C82H

EXPT_EXP	EQU	1C8CH

FND_INT1	EQU	1E94H

FIND_INT2	EQU	1E99H

STK_FETCH	EQU	2BF1H

STACK_A	EQU	2D28H

PRINT_FP	EQU	2DE3H

;

;System variables

;

TVDATA	EQU	5C0EH

ERR_SP	EQU	5C3DH

E_PPC	EQU	5C49H

CHURCHL	EQU	5C51H

SCR_CT	EQU	5C8CH

VECTOR	EQU	5CB7H

SECTOR	EQU	5CC9H

HD_11	EQU	5CEDH

;

;Offsets

;

ERR_NR	EQU	00H

FLAGS	EQU	01H

CHBYTE	EQU	0BH

PPC_HI	EQU	0CH

CHREC	EQU	0DH

CHFLAG	EQU	18H

CHDRIV	EQU	19H

HDNUMB	EQU	29H

RECFLG	EQU	43H

RECNUM	EQU	44H

RECLEN	EQU	45H

FLAGS3	EQU	7CH

;

;Hook codes

;

HOOK31	EQU	31H

HOOK32	EQU	32H

;

;Keywords

;

BEEP	EQU	0D7H

CAT	EQU	0CFH

CODE	EQU	0AFH

DATA	EQU	0E4H

LINE	EQU	0CAH

LPRINT	EQU	0E0H

POKE	EQU	0F4H

PRINT	EQU	0F5H

READ	EQU	0E3H

RESTORE	EQU	0E5H

;

;ASCII

;

PRCOMMA	EQU	06H

CR	EQU	0DH

TAB	EQU	17H

SPACE	EQU	28H

COMMA	EQU	2CH

�Extending Spectrum BASIC

The information given in this section, together with the examples given earlier should be sufficient to allow experienced machine code programmers to write their own new BASIC commands, and incorporate them into the Spectrum's BASIC. Non—programmers may still be interested in the details of the Spectrum's BASIC interpreter, and of the ingenious mechanism used to extend it. Please note that this information is primarily designed to give a general explanation of how we have implemented our extended BASIC commands. It is not intended to be a step by step guide to writing new BASIC commands. A fuller explanation of this material is given in The Spectrum Microdrive Book by Dr. Ian Logan, also published by Melbourne House.

We should first consider the workings of the Spectrums syntax checking routine. When the syntax checker detects an error in a statement, either as it is entered, or at runtime, a jump is made to the error handling routine. This is done by a RST 8 instruction, followed by a byte which defines the error type. Note the similarities between this and the hook codes discussed earlier. As with the normal hook codes,	the RST 8 causes a jump to the Shadow ROM where there is a second examination of the current BASIC statement, to see if it really is an error.

It is this 'second chance' that makes it possible for the new BASIC commands provided by the Interface 1 to exist. These new commands are perceived as errors by the Spectrums ROM, so the error routine is called. This passes control to the Interface 1, where the Shadow ROM does its own syntax checking, recognizes the new commands, and performs the appropriate action for each new command, before passing control back to the main Spectrum ROM. Code is provided in the Shadow ROM for checking commands starting with the following keywords: CAT, FORMAT, MOVE, ERASE, OPEN, SAVE, LOAD, VERIFY, MERGE, CLS, and CLEAR.

More interesting to us, however, is what happens when a statement 'fails the syntax' (that is, is found to be syntactically incorrect) of both the main ROM and the Shadow ROM. When this happens, the Shadow ROM decides that it really has

found an error, and jumps to the address which is stored in a system variable called VECTOR. This address is normally that of a main ROM error handling routine, which will print out an error message and cease execution. However, since the variable VECTOR is in RAM, we can change the value it holds to that of our own syntax checking routine, which will check the statement yet again, to see if it is one of the new commands that we have defined. If the statement is one of our new statements, our syntax checker will call a machine language subroutine which will perform the appropriate actions before returning control to the main ROM, otherwise it will call a routine to print an error message.

So, the control routine that must be added to handle a new statement must have two parts: Firstly, there must be a syntax routine which will identify the new command, any parameters that go with it, and the end of the statement it is in. Secondly, there must be a routine which will do the actual work of the command. Finally, of course, the system variable VECTOR must have been redirected to point to the syntax routine, so that 'errors' detected by the Shadow ROM will be redirected to your routine.

The syntax of your new command can be anything which will be rejected by the syntax checkers in both the main ROM and the Shadow ROM. Note however, that your command must not start with any of the eleven keywords which are recognised

by the Shadow ROM (see above).

The execution of the new commands then, is a fairly complex procedure, comprised of the following steps:

(i) Command is rejected as being syntactically incorrect by the syntax checking routine in main ROM. Accordingly, an error routine is called, using a RST 8 command.

(ii) This causes control to be transfered to the syntax checking routine in the Shadow ROM.

(iii) The Shadow ROM syntax checker rejects your statement, and calls the routine whose address is stored in the variable VECTOR. This would normally be the main ROMs "report an error" routine, but since you have previously changed the contents of VECTOR to point to your own syntax checking routine, it will be your routine that is called.

(iv) Your syntax routine checks to see that you have given what it regards as a correct command. Once it decides that you have, it calls a routine which you have written to do whatever task is required of the new BASIC command.

(v) Your routine returns control to the BASIC program which is currently running.

Although the task of extending the Spectrum's BASIC is quite complex a close study of the examples given in this book should be quite rewarding.

�THE SHADOW ROM DISASSEMBLY

The restart routines

THE 'RETURN TO MAIN ROM' RESTART

This restart is used to return to the "main" ROM, starting from the address held in the stack before calling this routine.

0000	MAIN-ROM	POP	HL	Remove return address from the

				machine stack.

0001		LD	(FLAGS3),+00	Clear FLAGS3.

0005		JP	0700,UNPAGE	Return to 'main' ROM.

THE 'START'

This is the main entry point to the 'shadow' ROM; it is paged in when the Program Counter reaches the address +0008 that is, the address of the main ROM 'ERROR' routine. (The other time in which the "shadow" ROM is paged in is when the Program Counter reaches the address +1708 i.e., the middle of the CLOSE command routine, which is not able to deal with Interface's channels.)

0008	ST-SHADOW	LD	HL,(CH-ADD)	The first instruction is common to

				both ROMs.

000B		POP	HL	Get the return address

000C		PUSH	HL	(usually points to the error code)

000D		JP	009A,START-2	Jump forward.

THE 'CALL A MAIN ROM ROUTINE' RESTART

This routine allows for a subroutine in the 'main' ROM to be called from the 'shadow' ROM, and can be called by using a RST	10 instruction, followed by the address of the 'main' ROM subroutine.

0010	CALBAS	LD	(H-L),HL	Save HL into SBRT.

0013		POP	HL	Get the return address (points to the

				address following the RST 10).

0014		PUSH	DE	Save DE temporarily.

0015		JR	0081,CALBAS-2	Jump forward.

0017		DEFB	+FF	Unused location.

THE 'TEST IF SYNTAX IS BEING CHECKED' RESTART

This corresponds to the 'main' ROM 'SYNTAX-Z' subroutine. A test of bit 7 of FLAGS wHL give the Zero flag set during syntax checking, and reset during

execution.

0018	CHKSYNTAX	BIT 7,(FLAGS)	Test bit 7 of FLAGS.

001C		RET		Finished.

001D		DEFB	+FF,+FF,+FF	Unused locations.

THE 'SHADOW ERROR' RESTART

Jumps to the required routine to deal with 'new' report messages. This routine can be called by using a RST	20 instruction followed by the error code (in the range +FF...+16).

0020	SH-ERR	RST	18,CHKSYNTAX	Jump to ST-ERROR if checking

0021		JR	Z,0068,ST-ERROR	syntax, or

0023		JR	003A,TEST-SP	to TEST-SP during runtime.

0025		DEFB	+FF,+FF,+FF	Unused locations.

THE 'MAIN ROM ERROR' RESTART

Before calling this routine, (ERR-NR) must contain the error code.

0028	ROMERR	RES	3,(TVFLAG)	Signal 'the mode is to be considered

				unchanged'

002C		JR	0040,RMERR-2	jump forward.

002E		DEFB	+FF,+FF	Unused locations.

THE 'CREATE NEW SYSTEM VARIABLES' RESTART

The routine is entered at 01F7.

0030	NEWVARS	JP	01F7,CRT-VARS	Jump forward immediately.

0033		DEFB	+FF,+FF,+FF	Unused locations.

0036		DEFB	+FF,+FF

THE 'MASKABLE INTERRUPT' ROUTINE

While the 'shadow' ROM is paged-in, the keyboard is not scanned.

0038	INT-SERV	EI		Enable interrupts.

0039		RET		Return immediately.

THE 'TEST-SP' ROUTINE

Check if it is necessary to print the required report message.

003A	TEST-SP	CALL	0077,CHECK-SP	Use 'main' ROM error handler if

				required.

003D		JP	0258,REP-MSG	Print the report message.

THE 'MAIN ROM ERROR' ROUTtNE

The pressing of BREAK during the loading of 'autorun' programs wHL reset the system; otherwise the error routine continues.

0040	RMERR-2	RST	18,CHKSYNTAX	Jump forward if checking syntax.

0041		JR	Z,0068,ST-ERROR

0043		CALL	0077,CHECK-SP	Use 'main' ROM error handler if

				required.

0046		CALL	17B9,RCL-T-CH	Reclaim all temporary channels &

				switch off drive motors.

0049		BIT	1,(FLAGS3)	Jump forward if not

004D		JR	Z,0068,ST-ERROR	during the loading of

004F		BIT	4,(FLAGS3)	an 'autorun' program.

0053		JR	Z,0068,ST-ERROR

0055		LD	A,(ERR-NR)	Fetch the error code.

0058		CP	+14	Check if attempting to BREAK into the

				loading of an autorun program.

005A		JR	NZ,0068,ST-ERROR	Jump if not.

005C		LD	HL,+0000	Otherwise reset the system

005F		PUSH	HL	by jumping to the address

0060		RST	0,MAIN-ROM	+0000 in the 'main' ROM.

0061		DEFB	+FF,+FF,+FF	Unused locations.

0064		DEFB	+FF,+FF

THE 'NON-MASKABLE INTERRUPT' ROUTINE

As with maskable interrupts, there are no service routines.

0066	NMINT-SRV	RETN		Return immediately.

THE 'ST-ERROR' ROUTINE

This routine must be entered with the error code in (ERR-NR), and has the same effect as the 'main' ROM 'ERROR' restart.

0068	STERROR	LD	HL,(CHADD)	The address of the character reached

006B		LD	(X-PTR),HL	by the interpreter is copied into

				the error pointer.

006E		LD	SP,(ERR-SP)	Clear machine stack.

0072		LD	HL,+16C5	Return via 'main' ROM 'SET-STK'

0075		PUSH	HL	routine to the error handler

0076		RST	0,MAIN-ROM	routine.

THE 'CHECK-SP' ROUTINE

Use the 'main' ROM error handler only if bit 2 of FLAGS3 is set.

0077	CHECK-SP	BIT	2,(FLAGS3)	Return. (Normally bit 2 is always

007B		RET	Z	reset)

007C		LD 	SP,(ERR-SP) 	Make error handler routine the

0080		RST	0,MAIN-ROM	return addrcs0 & exit.

THE 'CALBAS-2' ROUTINE

This routine uses the SBRT area to call the required routine in the 'main' ROM.

0081	CALBAS-2	LD	E,(HL)	Fetch the address of the subroutine

0082		INC	HL	to be called Into the DE

0083		LD	D,(HL)	register pair.

0084		LD	(5CBD),DE	Use the address with the CALL in

				SBRT area.

0088		INC	HL	Points to the return address.

0089		EX	(SP),HL	Exchange with initial value of DE

				register pair (see 0014).

008A		EX	DE,HL	Restore initial value of DE.

008B		LD	HL,+0000	Signal "a 'main' ROM routine has been

008E		PUSh	HL	called".

008F		LD	HL,+0008	Return address to the shadow ROM

0092		PUSH	HL	is +0008.

0093		LD	HL,+5CB9	Call indirectly the

0096		PUSH	HL	SBRT subroutine after having

0097		JP	0700,UNPAGE	paged-out the 'shadow' ROM.

The control routine

This routine is called from ST-SHADOW at 0008 when the shadow ROM is paged-in. It has 3 main tasks:

- If the paging of the shadow ROM is the return after a call to a 'main' ROM

 subroutine, then it returns to the calling routine.

- If an Interface's channel has been requested, it jumps to the required 'input'

 or 'output' routine.

- If an error has occurred in the 'main' ROM, a check is made to see if the

 error code is a 'hook code' (and calls the required routine if it is). If it

 is not a 'hook code', then it checks to determine whether the error is

 "Nonsense in BASIC", "Invalid filename", or "Invalid stream". If it is any of

 these, probably a 'new' command has been used. If so, the routine� corresponding to the command is called, otherwise the error is produced by

 jumping to the address 01F0 (held in the VECTOR system variable - thus

 altering this address to point a routine in RAM wHL give the possLDility of

 adding more 'new' commands). In all other cases, the main ROM error handler

 is used.

009A	START-2	PUSH	AF	Save A register.

009B		LD	A,H	Check if the return address

009C		OR	L	is zero.

009D		JR	NZ,00A5,START-3	Jump forward if it is not.

009F		POP	AF	Otherwise a 'main' ROM routine

00A0		POP	HL	has been called; clear stack.

00A1		LD	HL,(H-L)	Restore HL and return to the

00A4		RET		calling routine.

Now see if an Interface's channel has been requested.

00A5	START-3	PUSH	DE	Save DE temporarily.

00A6		LD	DE,+15FE	If a channel has been requested,

				this is the return address stored by

				the CALL 162C inside the 'main' ROM

				'CALL-SUB' subroutine.

00A9		SBC	HL,DE	Jump forward if no

00AB		POP	DE	channels have been requested.

00AC		JR	NZ,00BC,START-4

00AE		POP	AF	Restore A register (character to be

				transmitted if during 'output').

00AF		LD	HL,+0700	Make return address the

00B2		PUSH	HL	UNPAGE routine.

00B3		LD	HL,+0004	DE now holds (address of routine

				pointer - 4).

00B6		ADD	HL,DE	HL holds the address of the routine

				pointer.

00B7		LD	E,(HL)	Fetch the low byte.

00B8		INC	HL

00B9		LD	D,(HL)	Fetch the high byte.

00BA		EX	DE,HL	Move the address to HL.

00BB		JP	(HL)	Jump to the appropriate 'input' or

				'output' routine.

At this point, the shadow ROM has surely been paged-in by an error in the 'main' ROM.

00BC	START-4	RST	30,NEWVARS	Create interface variables if

00BD		LD	A,+01	non-existent, then send some

00BF		OUT	(+F7),A	signals to the Interface 1.

00C1		LD	A,+EE

00C3		OUT	(+EF),A

00C5		POP	AF	Remove A temporarily.

00C6		POP	HL	Return address (points to the error

				code after a RST	8).

00C7		PUSH	AF	Save A again.

00C8		RST	10,CALBAS	This calls a single 'LD A,(HL)'

00C9		DEFW	+007B	instruction, so the error code is

				fetched from the main ROM code.

00CB		LD	(ERR-NR),A	Store the error code.

00CE		CP	+FF	Check if the error is 'OK'.

00D0		JR	NZ,00E9,TESTCODE	Jump if it is not.

00D2		BIT	1,(FLAGS3)	This is set when using the 'shadow'

				ROM for the first time (i.e. after

				a NEW command).

00D6		JR	Z,00E7,NREPORT-0	Give an error if not the first time.

00D8		BIT	7,(PPC-hi)	Give an error also if the

00DC		JR	Z,00E7,NREPORT-0	line is not in the editing area.

00DE		LD	HL,(E-LINE)	Otherwise fetch the command code from

00E1		LD	A,(HL)	the editing area.

00E2		CP	+F7	Check if the command is 'RUN'.

00E4		JP	Z,0A95,LOAD-RUN	Load the 'run' program from

				Microdrive if so.

'Program finished'

00E7	NREPORT-0	RST	20,SH-ERR	Call the error handling

00E8		DEFB	+FF	routine.

The error code in A determines the task to be executed.

00E9	TEST-CODE	SUB	+1B	Reduce the range.

00EB		JP	NC,1981,HOOK-CODE	Jump if it's a hook code, or an

				invalid code (greater than 0-32).

00EE		CP	+F0	Jump if the error is

00F0		JR	Z,00FB,COPYCHADD	'Nonsense in BASIC'.

00F2		CP	+F3	Also if 'Invalid filename'.

00F4		JR	Z,00FB,C0PYCHADD

00F6		CP	+FC	Or 'Invalid stream'.

00F8		JP	NZ,0028,ROMERR	If none of these, use 'main' ROM

				error handler to signal the error.

00FB	COPYCHADD	LD	HL,(CH-ADD)	The character pointer

00FE		LD	(CHADD-),HL	is saved.

0101		POP	AF	Clear the stack.

0102		BIT	5,(FLAGX)	Use 'main' ROM error handler also if

0106		JP	NZ,0028,ROMERR	in INPUT mode, or

0109		BIT	0,(FLAGS3)	during execution of a 'new' command.

010D		JP	NZ,0028,ROMERR

0110		SET	0,(FLAGS3)	Signal "execution of a 'new' command"

0114		RST	18,CHKSYNTAX	Jump if during runtime.

0115		JR	NZ,011B,RUNTIME

0117		LD	(PPC-hi),+FF	Signal "syntax time".

Now a loop is entered to find the line that has produced the error.

011B	RUNTIME	LD	B,(SUBPPC)	Statement counter.

011E		LD	C,+00	Counter of ' " ' characters.

0120		BIT	7,(PPC-hi)	Jump forward if the line

0124		JR	Z,0130,PROG-LINE	is in the program area.

0126		PUSH	BC	Save counters.

0127		RST	10,CALBAS	Call main ROM 'E-LINE-NO' (it fetches

0128		DEFW	+19FB	the number of the line in the editing

				area, but is actually used to update

				CH-ADD to the 1st char. in the line).

012A		POP	BC	Restore counters.

012B		RST	l0,CALBAS	Call GET-CHAR in the main ROM to

012C		DEFW	+0018	update HL to the 1st character in

				the line.

012E		JR	016F,S-STAT	Jump forward.

0130	PROG-LINE	LD	HL,(PROG)	Fetch start of program area.

0133	SC-L-LOOP	LD	A,(PPC-hi)	Compare the number of the tine to be

0136		CP	(HL)	searched with that of the 'current'

				line.

0137		JR	NC,013B,TEST-LOW	Jump if the 'current' line no. is

				less than or equal to that of the

				line to be searched for.

Nonsense in BASIC.

0139	NREPORT-1	RST	20,SH-ERR	Call the error handling

013A		DEFB	+00	routine.

013B	TEST-LOW	INC	HL	Points to low byte of line no.

013C		JR	NZ,0144,LINE-LEN	Jump if the 'current' line is not the

				expected one.

013E		LD	A,(PPC-lo)	Compare also the high byte of

0141		CP	(HL)	the line numbers.

0142		JR	C,0139,NREPORT-1	Give an error if the line dDEs

				not exist.

0144	LINE-LEN	INC	HL	Increment the pointer.

0145		LD	E,(HL)	Fetch low byte of the length.

0146		INC	HL

0147		LD	D,(HL)	Fetch high byte.

0148		INC	HL	Points to start of the line.

0149		JR	Z,0l6F,S-STAT	Jump if the line is found,

014B		ADD	HL,DE	otherwise points to next line.

014C		JR	0l33,SC-L-LOOP	Continue until found.

014E	SKIP-NUN	LD	DE,+0006	Length of a floating point number.

0151		ADD	HL,DE	Skip the floating point representat.

This loop advances the pointer 'HP until it reaches the start of the statement that has produced the error.

0152	EACH-ST	LD	A,(HL)	Get a character from line.

0153		CP	+0E	Is it the 'number' marker ?

0155		JR	Z,0l4E,SKIP-NUM	If so, advance the pointer after the

				'number'.

0157		INC	HL	Points to next character.

0158		CP	+22	Is the character a '"'?

015A		JR	NZ,015D,CHKEND	Jump it it is not.

015C		DEC	C	Decrement counter for each '"' found

015D	CHKEND	CP	+3A	Is the character a colon?

015F		JR	Z,0165,CHKEVEN	Jump if it is.

0161		CP	+CB	Jump unless the character is 'THEN'.

0163		JR	NZ,0l69,CHKEND-L	Check whether the number of quotes

0165	CHKEVEN	BIT	0,C	found is even (i.e. colon or THEN

				are out of a string).

0167		JR	Z,016F,S-STAT	Jump if the statement is finished.

0169	CHKEND-L	CP	+80	Check whether the line is finished.

016B		JR	NZ,0152,EACH-ST	Continue the loop if not.

016D		JR	0139,NREPORT-1	Give an error (because a wrong number

				of quotes have been found).

016F	S-STAT	DJNZ	0152,EACH-ST	Continue with next statement.

0171		DEC	HL	Now HL holds the start address of the

				required statement.

0172		LD	(CH-ADD),HL	Update CH-ADD to this address.

0175		RST	18,CHKSYNTAX	Jump forward if during runtime.

0176		JR	NZ,01AA,CL-WORK

0178		BIT	7,(PPC-hi)	Give an error report if the line is

017C		JP	Z,01F0,ERR-6	not in the editing area.

The final loop is made during syntax checking, for removing all 6-byte floating point numbers inserted in the line by the 'main' ROM interpreter.

017F		DEC	HL	This balances the INC below.

0180		LD	C,+00	Clear C register.

0182	RCLN-NUM	INC	HL	Points to next character.

0183		LD	A,(HL)	Fetch the character.

0184		CP	+0E	Jump if the character is not the

0186		JR	NZ,01A5,NEXTNUM	start of a 'number'.

0188		PUSH	BC	Save the counter.

0189		LD	BC,+0006	'6' bytes have to be reclaimed.

018C		RST	10,CALBAS	Call RECLAIM-2 in the 'main' ROM to

018D		DEFW	+19E8	reclaim the 'number'.

018F		PUSH	HL	Save HL (points after the reclaimed

				'number').

0190		LD	DE,(CHADD-)	Jump forward if the '6' bytes

0194		AND	A	reclaimed were after the character

0195		SBC	HL,DE	pointed by CHADD-.

0197		JR	NC,01A3,NXT-1

0199		EX	DE,HL	Otherwise CHADD- needs to be updated.

				First move it into HL.

019A		LD	BC,+0006	The character pointed by CHADD- has

019D		AND	A	been moved '6' bytes down.

019E		SBC	HL,BC

01A0		LD	(CHADD-),HL	Store the new value.

01A3	NXT-1	POP	HL	Restore pointer and counter.

01A4		POP	BC

01A5	NEXTNUM	LD	A,(HL)	Jump back into the loop until

01A6		CP	+0D	the line is finished.

01A8		JR	NZ,0182,RCLM-NUM

Now the working areas and the new system variables are cleared.

01AA	CL-WORK	RST	10,CALBAS	Clear work areas by calling main

01AB		DEFW	+16BF	ROM 'SET-WORK' routine.

01AD		CALL	024D,RES-VARS	Reset some 'new' variables to +FF.

Finally, the command code is fetched from the line, and if it is a 'new' command, the appropriate routine is called.

01B0		RST	10,CALBAS	Call NEXT-CHAR in the main ROM to

01B1		DEFW	+0020	fetch the command code.

01B3		SUB	+CE	Reduce range of the code.

01B5		CP	+01	Ia the command a 'CAT'

01B7		JP	Z,0486,CAT-SYN	Check CAT syntax if so.

01BA		CP	+02	Also for 'FORMAT',...

01BC		JP	Z,04B4,FRMT-SYN

01BF		CP	+03	...'MOVE',...

01C1		JP	Z,053D,MOVE-SYN

01C4		CP	+04	...'ERASE',...

01C6		JP	Z,053l,ERASE-SYN

01C9		CP	+05	...'OPEN',...

01CB		JP	Z,04ED,OPEN-SYN

01CE		CP	+2A	...'SAVE',...

01D0		JP	Z,082F,SAVE-SYN

01D3		CP	+21	...'LOAD',...

01D5		JP	Z,0894,LOAD-SYN

01D8		CP	+08	...'VERIFY',...

01DA		JP	Z,089E,VERIF-SYN

01DD		CP	+07	...'MERGE',...

01DF		JP	Z,08A8,MRG-SYN

01E2		CP	+2D	...'CLS#',...

01E4		JP	Z,0559,CLS#-SYN

01E7		CP	+2F	...and 'CLEAR#' command.

01E9		JP	Z,057F,CLR#-SYN

If the command that has produced the error was none of these, a jump is made to the address held in VECTOR system variable.

01EC	ERR-V	LD	HL,(VECTOR)	Jump to the address held in

01EF		JP	(HL)	VECTOR (normally ERR-6 below).

Now the error produced by the main ROM is confirmed.

01F0	ERR-6	LD	HL,(CHADD-)	Restore initial CH-ADD contents.

01F3		LD	(CH-ADD),HL

01F6		RST	28,ROMERR	Give the appropriate error.

THE 'CREATE NEW SYSTEMS VARIABLES' ROUTINE

This routine is used to create the 'new' system variables if nonexistent and it is called from the restart 0030. Many variables are initialised to its default value.

01F7	CRT-VARS	LD	HL,(CHANS)	Fetch start of channel area.

01FA		LD	DE,+A349	This is FFFF-5CB6.

01FD		ADD	HL,DE	The carry flag is now set it the

				CHANS area starts after the

				address +5CB6.

01FE		JR	C,0235,VAR-EXIST	Jump if the 'new' variables already

				exist.

0200		LD	HL,+0224	Pre-load machine-stack with the

0203		PUSH	HL	address DEFAHLT below.

0204		LD	HL,(STKBOT)	Clear the calculator

0207		LD	(STKEND),HL	stack.

020A		LD	HL,+5C92	Set MEM with the address of

020D		LD	(MEM),HL	MEMBOT area.

0210		LD	HL,+5CB5	One location before the new space

				is needed.

0213		LD	BC,+003A	Length of space needed.

0216		LD	DE,+0000	Signal 'a main ROM routine has been

0219		PUSH	DE	called'.

021A		LD	E,+08	Store return address to the

021C		PUSH	DE	shadow ROM.

021D		LD	DE,+1655	Return address to main ROM

0220		PUSH	DE	is MAKE-ROOM.

0221		JP	0700,UNPAGE

After the 'insertion' of the new space has been made, the program continues here with the initialisation of some variables.

0224	DEFAULT	LD	HL,+023A	Base address of 'default values'

				table.

0227		LD	BC,+0013	Length of table.

022A		LD	DE,+5CB6	Start of 'new variables' area.

022D		LDIR		Store default values.

022F		LD	A,+01	Set COPIES to +01.

0231		LD	(COPIES),A

0234		RET		Finished.

If the new variables already exist, bit 1 of FLAGS3 is reset.

0235	VAR-EXIST	RES 1,(FLAGS3)	'New variables already exist'.

0239		RET		Finished.

THE 'SYSTEM VARIABLES DEFAHLT VALDES' TABLE

This table contains the default values of all the 'new' system variables from FLAGS3 to SER-FL.

023A		DEFB	+02	Default value for FLAGS3 (bit 1 is

				set to signal that the aheadow ROM

				has been paged for the first time

				(see 00D2).

023B		DEFW	+01F0	Default for VECTOR is ERR-6 address.

023D		LD	HL,+0000	This short subroutine is the SBRT

0240		CALL	+0000	'variable', used to call main ROM

0243		LD	(H-L),HL	routines from the shadow ROM.

0246		RET

0247		DEFW	+000C	default for BAUD is +000C

				(i.e. 9600 baud).

0249		DEFB	+01	Default for NTSTAT.

024A		DEFB	+00	Default for IOBORD colour (black).

024B		DEFW	+0000	Default for SER-FL.

THE 'RESET NEW SYSTEM VARIABLES' SUBROUTINE

Before using the 'new' system variables from NTRESP to HD-11, their values

are reset to +FF.

024D	RES-VARS	LD	HL,NTRESP	Points to the 1st variable.

0250		LD	B,+22	The block is made by '34' bytes.

0252	EACH-VAR	LD	(HL),+FF	Store +FF in all the bytes in

0254		INC	HL	the block.

0255		DJNZ	0252,EACH-VAR

0257		RET		Finished.

THE 'SHADOW REPORT PRINTING' ROUTINE

This routine is very similar to 'MAIN-3' (+1303) in the 'main' ROM, but the

report message printed is one of the 'shadow' report.

0258	REP-MSG	LD	(FLAGS3),+00	First clear FLAGS3.

025C		EI		Enable interrupts.

025D		HALT		Accept one interrupt.

025E		CALL 17B9,RCL-T-CH	Reclaim temporary channels and

				switch off drive motors.

0261		RES	5,(FLAGS)	Signal 'ready for a new key'.

0265		BIT	1,(FLAGS2)	Jump if the printer buffer

0269		JR	Z,026E,FETCH-ERR	has not been used, otherwise call

026B		RST	10,CALBAS	COPY-BUFF in the main ROM to empty

026C		DEFW	+0ECD	the buffer.

026E	FETCH-ERR	POP	HL	This address points to the error code

				(after a RST 20).

026F		LD	A,(HL)	Fetch error code.

0270		LD	(ERR-NR),A	Store it into ERR-NR.

0273		INC	A	Increment error number.

0274		PUSH	AF	Save the new value.

0275		LD	HL,+0000	The system variables

0278		LD	(FLAGX),H	FLAGX, X-PTR-hi and DEFADD are all

027B		LD	(X-PTR-hi),H	set to zero.

027E		LD	(DEFADD),HL

0281		INC	L	Now HL holds +0001.

0282		LD	(+5C16),HL	Displacement for stream 0 is made

				+0001 (i.e. reset stream 0 to the

				"K" channel).

0285		RST	10,CALBAS	Clear work areas, calculator stack

0286		DEFW	+16B0	by calling SET-MIN.

0288		RES	5,(FLAGX)	Signal 'editing mode'.

028C		RST	10,CALBAS	Clear lower screen by calling

028D		DEFW	+0D6E	CLS-LOWER.

028F		SET	5,(TVFLAG)	Signal 'the lower screen is to be

				cleared'.

0293		RES 	3,(TVFLAG) 	Signal 'the mode is to be conside-

				red unchanged'.

0297		POP 	AF 	Restore error number.

0298		LD 	HL,+02B7 	Base address of 'report messages'

				table.

029B		LD 	B,+04 	Hake BC hold a sufficiently high

				number.

029D		CPIR		Advance HL to the required report

				message in the table.

029F	PR-REP-LP	LD 	A,(HL) 	Fetch character of message.

02A0		CP	+20 	Print it unless reached the

02A2		JR 	C,02AC,END-PR-MS	'marker' of next message.

02A4		PUSH	HL	Save pointer.

02A5		RST	10,CALBAS 	Call main ROM 'PRINT-A' restart

02A6		DEFW	+0010	to print the character.

02A8		POP 	HL 	Restore pointer.

02A9		INC 	HL 	Point to next character.

02AA		JR 	029F,PR-REP-LP 	Continue with next character.

02AC	END-PR-MS	LD 	SP,(ERR-SP) 	Clear machine stack.

02B0		INC 	SP 	Ignore also the address +1303

02B1		INC 	SP 	pointed by ERR-SP (that is

				replaced with the +1349 below).

02B2		LD 	HL,+1349 	Return to the main ROM in the

02B5		PUSH	HL	middle of the 'print report message

02B6		RST	0,MAIN-ROM	routine.

THE 'SHADOW' REPORT MESSAGES

Before each report there is the correspondent error code, incremented by 1.

02B7		DEFB	+00

02B8		DEFM	"Program finished"

02C8		DEFB	+01

02C9		DEFM	"Nonsense in BASIC"

02DA		DEFB	+02

02DB		DEFM	"Invalid stream number"

02F0		DEFB	+03

02F1		DEFM	"Invalid device expression"

030A		DEFB	+04

030B		DEFM	"Invalid name"

0317		DEFB	+05

0318		DEFM	"Invalid drive number"

032C		DEFB	+06

032D		DEFM	"Invalid station number"

0343		DEFB	+07

0344		DEFM	"Missing name"

0350		DEFB	+08

0351		DEFM	"Missing station number"

0367		DEFB	+09

0368		DEFM	"Missing drive number"

037C		DEFB	+0A

037D		DEFM	"Missing baud rate"

038E		DEFB	+0B

038F		DEFM	"Header mismatch error"

03A4		DEFB	+0C

03A5		DEFM	"Stream already open"

03B8		DEFB	+0D

03B9		DEFM	"Writing to a 'read' file"

03D1		DEFB	+0E

03D2		DEFM	"Reading a 'write' file"

03E8		DEFB	+0F

03E9		DEFM	"Drive 'write' protected"

0400		DEFB	+10

0401		DEFM	"Microdrive full"

0410		DEFB	+11

0411		DEFM	"Microdrive not present"

0427		DEFB	+12

0428		DEFM	"File not found"

0436		DEFB	+13

0437		DEFM	"Hook code error"

0446		DEFB	+14

0447		DEFM	"CODE error"

0451		DEFB	+15

0452		DEFM	"MERGE error"

045D		DEFB	+16

045E		DEFM	"Verification has failed"

0475		DEFB	+17

0476		DEFM	"Wrong file type"

0485		DEFB	+18

The syntax checking routines

The routines in this section of the shadow ROM check the syntax of the 'new' commands and call the command routines during runtime.

THE 'CAT' COMMAND SYNTAX ROUTINE

This routine checks that the command is in the form CAT n, or CAT #s,n then sets S-STR1 and D-STR1 system variables before exiting in syntax time or executing the CAT during runtime.

0486	CAT-SYN	LD	HL,S-STR1	First make the screen

0489		LD	(HL),+02	'current' stream.

048B		RST	10,CALBAS	Advance CH-ADD with a call to

048C		DEFW	+0020	'NEXT-CHAR' in the main ROM.

048E		CP	+0D	If the line ends here, jump to

0490		JR	Z,0494,MISSING-D	produce an error.

0492		CP	+3A	Give an error also if the

0494	MISSING-D	JP	Z,0683,NREPORT-9	statement ends with a colon.

0497		CP	+23	Jump if after the keyword

0499		JR	NZ,04A6,CAT-SCRN	there is not the 'hash' character.

049B		CALL	064E,EXPT-STRM	Otherwise evaluate stream number.

049E		CALL	05B1,SEPARATOR	Give an error if after the stream

04A1		JR	NZ,04B2,OREPORT-1	number there is no separator.

04A3		RST	10,CALBAS	Advance CH-ADD to next

04A4		DEFW	+0020	character.

04A6	CAT-SCRN	CALL	061E,EXPT-NUM	Evaluate drive number.

04A9		CALL	05B7,ST-END	Confirm end of statement and exit

				during syntax time.

04AC		CALL 066D,CHECK-M-2	Checks that drive number held in

				D-STR1 is in range.

04AF		JP	1E70,CAT-RUN	Do the CATalogue.

'Nonsense, in BASIC'

04B2	OREPORT-1	RST	20,SH-ERR	Call the error handling

04B3		DEFB	+00	routine.

THE 'FORMAT' COMMAND SYNTAX ROUTINE

A FORMAT command may have one of the following forms: FORMAT "m";n;"name" -FORMAT "b";n - FORMAT "t";n - FORMAT "n";n. This routine handles all forms and

sets N-STR1, L-STR1 and D-STR1 as required before exiting during syntax checking, or executing the command during runtime.

04B4	FRMT-SYN	CALL	05F2,EXPT-SPEC	Evaluate (string)(separator)(number)

				and set L-STR1, D-STR1.

04B7		CALL	05Bl,SEPARATOR	If there is not a further

04BA		JR	NZ,04BF,NO-FOR-M	separator, no filename is to be

					expected, so jump.

04BC		CALL	062F,EXPT-NAME	Evaluate "name" and set N-STR1.

04BF	NO-FOR-M	CALL	05B7,ST-END	Confirm end of statement and exit

				during syntax checking.

04C2		LD	A,(L-STR1)	Fetch channel specifier.

04C5		CP	+54	Jump with FORMAT "T"

04C7		JR	Z,04CD,FOR-B-T

04C9		CP	+42	Test for FORMAT "B" - note that the

				routine is the same as that of

				FORMAT "T".

04CB		JR	NZ,04D3,NOT-FOR-B	Jump with "N" and "M" channels.

04CD	FOR-B-T	CALL	06B0,TEST-BAUD	Check that D-STR1 holds a valid baud

				rate.

04D0		JP	0AC9,SET-BAUD	Set BAUD variable from D-STR1 value

				(the actual FORMAT with RS232 link).

04D3	NOT-FOR-B	CP	+4E	Jump if not a FORMAT "N" command.

04D5		JR	NZ,04E7,FOR-M

04D7		CALL	068F,TEST-STAT	Check that D-STR1 holds a valid

				station number.

04DA		LD	A,(D-STR1)	Give an error if attempting to

04DD		AND	A	FORMAT "n"';0 (i.e. with the

04DE		JP	Z,069F,NREPORT-6	'broadcast' specifier).

04E1		LD	(NTSTAT),A	This is the actual FORMAT command

				with the network.

04E4		JP	05C1,END1	Finished.

04E7	FOR-M	CALL	0685,TEST-MNAM	Check that the various parameters

				are correct.

04EA		JP	1E75,FOR-RUN	Do the FORMAT "M" command.

ThE 'OPEN' COMMAND SYNTAX ROUTINE

This routine deals with OPEN #s;"m";n;"name" - OPEN #s;"b" - OPEN #s;"t" -

OPEN #s;"n";n commands. All parameters are stored into S-STR1, N-STR1, D-STR1 and L-STR1 variables before exiting during syntax checking or executing the command during runtime.

04ED	OPEN-SYN	CALL	064E,EXPT-STRM	Evaluate stream number.

04F0		CALL	05B1,SEPARATOR	Give an error report if the separator

04F3		JR	NZ,04B2,OREPORT-1	has been missed after 'stream no.'

04F5		CALL	05F2,EXPT-SPEC	Evaluate channel specifier,

				(separator numeric expression).

04F8		CALL	05B1,SEPARATOR	Jump if no further separator is

04FB		JR	NZ,0500,NOT-OP-M	present.

04FD		CALL	062F,EXPT-NAME	Otherwise evaluate "name".

0500	NOT-OP-M	CALL	05B7,ST-END	Confirm end of statement and exit

				if syntax is being checked.

0503		LD	A,(S-STR1)	Fetch stream number.

0506		RST	10,CALBAS	Call main ROM 'STR-DATA1' routine;

0507		DEFW	+1727	on exit, BC holds 'stream data'.

0509		LD	HL,+0011	In fact, jump if the current stream

050C		AND	A	is already opened with a 'new'

050D		SBC	HL,BC	channel.

050F		JR	C,052F,NREPORT-C

0511		LD	A,(L-STR1)	Fetch channel specifier.

0514		CP	+54	Jump if opening a 't' channel.

0516		JR	Z,051C,OPEN-RS

0518		CP	+42	Jump if not a 'b' channel.

051A		JR	NZ,051F,NOT-OP-B

051C	OPEN-RS	JP	0B47,OP-RSCHAN	Do the OPEN referred to RS232 link.

051F	NOT-OP-B	CP	+4E	Jump if not a 'n' channel (i.e.

0521		JR	NZ,0520,OP-M-C	with 'm' channel).

0523		CALL	068F,TEST-STAT	Check that D-STR1 holds a valid

				station number.

0526		JP	0EA3,OPEN-N-ST	Do the OPEN referred to the network.

0529	OP-M-C	CALL	0685,TEST-MNAM	Check that all parameters are valid.

052C		JP	1E7A,OP-RUN	Do the OPEN "M" command.

'Stream already open'

052F	NREPORT-C	RST	20,SH-ERR	Call the error handling

0530		DEFB	+0B	routine.

THE 'ERASE' COMMAND SYNTAX ROUTINE

This command has only one form and, thus, this routine is more straightforward than the preceding ones.

0531	ERASE-SYN	CALL	06A3,EXPT-EXPR	Evaluate ("m";n;"name")

0534		CALL	05B7,ST-END 	Confirm end of statement and exit

				during syntax checking.

0537		CALL	0685,TEST-MNAM	Check that all parameters are

				valid.

053A		JP	1E66,ERASE-RUN	Do the ERASE command.

THE 'MOVE' COMMAND SYNTAX ROUTINE

A 'MOVE' command requires two sets of parameters, for the 'input' channel and for the 'output' channel. These parameters are stored respectively in the two areas D-STR1 and D-STR2.

053D	MOVE-SYN	CALL	06B9,EXPT-EXP1	Evaluate stream number, or channel

				expression.

0540		CALL	059F,EX-D-STR	Exchange D-STR1 and D-STR2 contents.

0543		RST	10,CALBAS	Call GET-CHAR in the main ROM.

0544		DEFW	+0018

0546		CP	+CC	The keyword 'TO' must be present

0548		JR	NZ,0584,NONSENSE	between the two expressions.

054A		CALL	06B9,EXPT-EXP1	Evaluate 2nd stream number, or

				channel expression.

054D		CALL	059F,EX-D-STR	Exchange again D-STR areas.

0550		RST	10,CALBAS	Call GET-CHAR in the main ROM.

0551		DEFW	+0018

0553		CALL	05B7,ST-END	Confirm end of statement and exit

				during syntax checking.

0556		JP	1E6B,MOVE-RUN	Do the MOVE command,

THE 'CLS#' COMMAND ROUTINE

This routine has the tasks of both 'syntax checking' and 'execution'. During runtime, ATTR-P, ATTR-T, MASK-P, MASK-T, P-FLAG and BORDCR system variables are reset to the 'initiaP value (as after a NEW command).

0559	CLS#-SYN	RST	10,CALBAS	Advance CH-ADD after the

055A		DEFW	+0020	keyword CLS.

055C		CP	+23	The character must be a '#'.

055E		JR	NZ,0584,NONSENSE

0560		RST	10,CALBAS	Advance CH-ADD again.

0561		DEFW	+0020

0563		CALL	05B7,ST-END	Confirm end of statement and exii

				during syntax checking.

0566		LD	HL,+0038	+38 is the attribute byte.

0569		LD	(ATTR-P),HL	Store +38 into ATTR-P, clear MASK-P.

056C		LD	(ATTR-T),HL	Store +38 into ATTR-T, clear MASK-T.

056F		LD	(BORDCR),L	Store +38 also for lower screen

				attribute.

0572		LD	(P-FLAG),H	Clear P-FLAG.

0575		LD	A,+07	Set white border.

0577		OUT	(+FE),A

0579		RST	10,CALBAS	Call main ROM 'CLS' routine.

057A		DEFW	+0D6B

057C		JP	05Cl,END1	Finished.

THE 'CLEAR#' COMMAND ROUTINE

As in the previous routine, this routine both 'checks' and 'executes' the command. All streams are closed in turn, with bit 1 of FLAGS3 set to signal

that the remaining buffer contents are to be erased (no data is sent, as

opposed to the case of a CLOSE# command).

057F	CLR#-SYN	RST	10,CALBAS	Advance CH-ADD.

0580		DEFW	+0020

0582		CP	+23	The character must be a '#'.

0584	NONSENSE	JP	NZ,04B2,OREPORT-1

0587		RST	10,CALBAS	Advance CH-ADD again.

0588		DEFW	+0020

058A		CALL	05B7,ST-END	Confirm end of statement and exit

				during syntax checking.

058D		XOR	A	Start with stream 0.

058E	ALL-STRMS	PUSH	AF	Save stream number.

058F		SET	1,(FLAGS3)	Signal 'CLEAR# command'.

0593		CALL	1718,CLOSE	Close the current stream.

0596		POP	AF	Restore stream number.

0597		INC	A	Each stream in turn is examined.

0598		CP	+10	Continue until all streams 0..15

059A		JR	C,058E,ALL-STRMS	have been closed.

059C		JP	05C1,END1	Finished.

THE 'EXCHANGE FILE SPECIFIERS' SUBROUTINE

This subroutine exchanges the contents of D-STR1 area with those of the D-STR2 area and vice-versa.

059F	EX-D-STR	LD	HL,+5CD6	Start of first area.

05A2		LD	DE,+5CDE	Start of 2nd area.

05A5		LD	B,+08	Both areas are 8 bytes in length.

05A7	ALL-BYTES	LD	A,(DE)	Fetch a byte from D-STR2.

05A8		LD	C,(HL)	Fetch a byte from D-STR1.

05A9		LD	(HL),A	Store into D-STR1 the byte coming

				from D-STR2.

05AA		LD	A,C	Byte from D-STR1.

05AB		LD	(DE),A	Store it into D-STRZ.

05AC		INC	HL	Advance the pointers.

05AD		INC	DE

05AE		DJNZ	05A7,ALL-BYTES	Continue until the areas have

				been exchanged.

05B0		RET		Finished.

THE 'SEPARATOR' SUBROUTINE

This short subroutine is called several times to see if the character held in the accumulator is a valid separator (i.e. a comma or a semicolon). A return with the Zero flag reset is made if the character is not a separator.

05B1	SEPARATOR	CP 	+2C 	Is the character a comma?

05B3		RET	Z	Return with zero flag set if so.

05B4		CP 	+3B 	Is the character a semicolon?

05B6		RET		Return with zero flag set if so.

THE 'END OF STATEMENT' ROUTINE

After the syntax of the 'new' commands has been checked, a jump is made here to confirm that the statement is finished. An error report is given if there are some characters left in the line. A return is made to the calling routine only during runtime, otherwise the control returns to the 'main' ROM interpreter.

05B7	ST-END	CP	+0D	Jump if the statement ends

05B9		JR	Z,05BF,TEST-RET	with ENTER.

05BB		CP	+3A	Give an error if character is not

05BD		JR	NZ,0584,NONSENSE	a colon (i.e. the statement is not

				finished).

05BF	TEST-RET	RST	18,CHKSYNTAX	Return only during runtime,

05C0		RET NZ	otherwise continue below.

THE 'RETURN TO THE MAIN INTERPRETER' ROUTINE

The control returns to the main interpreter, when a 'new' command has been checked or executed, for the interpretation of the next statement.

05C1	END1	LD	SP,(ERR-SP)	Clear machine stack.

05C5		LD	(ERR-NR),+FF	Clear error code.

05C9		LD	HL,+1BF4	Return address to main ROM is

05CC		RST	18,CHKSYNTAX	STMT-NEXT if syntax being checked.

05CD		JR	Z,05E0,RETAD-RUN-SYN

05CF		LD	A,+7F	Give, an error if BREAK is pressed

05D1		IN	A,(+FE)	during runtime.

05D3		RRA

05D4		JR	C,05DD,RETAD-RUN

05D6		LD	A,+FE

05D8		IN	A,(+FE)

05DA		RRA

05DB		JR	NC,05E2,BREAK-PGM

05DD	RETAD-RUN	LD	HL,+1B7D	Return address during runtime is

				STMT-R-1.

05E0	RETAD-SYN	PUSH	HL	Save the return address.

05E1		RST	0,MAIN-ROM	Return to the main ROM interpreter.

'BREAK into program'

05E2	BREAK-PGM	LD	(ERR-NR),+14	Store the error code and call

05E6		RST	28,ROMERR	the error handling routine.

THE 'EVALUATE STRING EXPRESSION' SUBROUTINE

A call to the main ROM 'EXPT-EXP' (class-9A) subroutine is made, to evaluate a string expression. During runtime the parameters of the string (start and length) are returned in the DE and BC register pairs.

05E7	EXPT-STR	RST	10,CALBAS	Call 'EXPT-EXP' in the main ROM.

05E8		DEFW	+1C8C

05EA		RST	18,CHKSYNTAX	Return if syntax is being checked

05EB		RET	Z

05EC		PUSH AF	Save the zero flag and the character

				following the string.

05ED		RST	10,CALBAS	Call 'STK-FETCH' in the main ROM to

05EE		DEFW	+2BF1	fetch the parameters.

05F0		POP	AF	Zero flag reset to signal 'runtime'

05F1		RET		Finished.

THE 'EVALUATE CHANNEL SPECIFIER' SUBROUTINE

The subroutine is entered at EXPT-SPEC or at EXP-SPEC2 depending upon whether or not the character pointer is to be updated to the next character. A single character string is evaluated, and its upper case ASCII value is stored into

L-STR1 during runtime. If a separator is present after the single character string, then the routine continues into EXPT-NUM.

05F2	EXPT-SPEC	RST	10,CALBAS	Advance CH-ADD.

05F3		DEFW +0020

05F5	EXP-SPEC2	CALL 95E7,EXPT-STR	Evaluate string expression.

05F8		JR	Z,060C,TEST-NEXT	Jump if syntax is being checked.

05FA		PUSH AF	Save the character following the

				string.

05FB		LD	A,C	'A' holds the low byte of the

				string length.

05FC		DEC 	A 	Jump if there is more than one

05FD		OR 	B 	character in the string (also if the

05FE		JR 	NZ,062D,NREPORT-3	string is null).

0600		LD 	A,(DE) 	Fetch the channel specifier.

0601		RST	10,CALBAS 	Call 'ALPHA' to see whethe nt isi

0602		DEFW	+2C8D	valid letter.

0604		JR 	NC,062D,NREPORT-3	Jump if it is not a valid letter

0606		AND	+DF 	Make the letter upper case.

0608		LD 	(L-STR1),A 	Store the channel specifier.

060B		POP	AF	The 'next character' is restored.

060C	TEST-NEXT	CP	+0D 	Return if it is ENTER, or a colon,

060E		RET	Z

060F		CP	+3A

0611		RET	Z

0612		CP	+A5 	Return also with a keyword.

0614		RET	NC

0615		CALL	05B1,SEPARATOR	Otherwise a separator must be found.

0618		JP	NZ,04B2,OREPORT-1	Give an error if not found.

061B		RST	10,CALBAS	A numeric expression (i.e. drive

061C		DEFW	+0020	no.,station no., baud rate) is

				expected. But first advance CH-ADD

				past the separator.

THE 'EVALUATE NUMERIC EXPRESSION' SUBROUTINE

This subroutine is used whenever a single numeric expression is to be evaluated. The result is returned during runtime into the BC register pair and into the�D-STR1 system variable.

061E	EXPT-NUM	RST	10,CALBAS	Call EXPT-NUM in the main ROM to

061F		DEFW	+1C82	evaluate the expression.

0621		RST	18,CHKSYNTAX	Return if syntax is being checked.

0622		RET	Z

0623		PUSH	AF	Save character following the

				expression and zero flag.

0624		RST	10,CALBAS	Call FIND-INT2 to fetch the

0625		DEFW	+1E99	value from calculator stack.

0627		LD	(D-STR1),BC	Store the value.

062B		POP	AF	Restore character and zero flag.

062C		RET		Finished.

'Invalid device expression'

062D	NREPORT-3	RST	20,SH-ERR	Call the error handling

062E		DEFB	+02	routine.

THE 'EVALUATE FILENAME' SUBROUTiNE

A string expression is evaluated and, provided that the length is within the range 1..10 characters, the 'length' and the 'start' of that string are stored into N-STR1 and (N-STR1 + 2).

062F	EXPT-NAME	RST	10,CALBAS	Advance CH-ADD.

0630		DEFW	+0020

0632		CALL	05E7,EXPT-STR	Evaluate the string.

0635		RET	Z	Return if syntax is being checked.

0636		PUSH	AF	Save zero flag and 'next character'.

0637		LD	A,C	Give an error with null string.

0638		OR	B

0639		JR	Z,064C,NREPORT-4

063B		LD	HL,+000A	Give the error also if 'length'

063E		SBC	HL,BC	exceeds ten characters.

0640		JR	C,064C,NREPORT-4

0642		LD	(N-STR1),BC	Store the 'length'.

0646		LD	(N-STR1+2),DE	Store the 'start'.

064A		POP	AF	Restore A and zero flag.

064B		RET		Finished.

'Invalid name'

064C	NREPORT-4	RST	20,SH-ERR	Call the error handling

064D		DEFB	+03	routine.

THE 'EVALUATE STREAM NUMBER' SUBROUTINE

A single numeric expression is evaluated and the result, in the range 0..15, is stored into S-STR1 variable during runtime.

064E	EXPT-STRM	RST	10,CALBAS	Advance CH-ADD.

064F		DEFW	+0020

0651		RST	10,CALBAS	Call EXPT-1NUM to evaluate a numeric

0652		DEFW	+1C82	expression.

0654		RST	18,CHKSYNTAX	Return if syntax is being checked.

0655		RET	Z

0656		PUSH	AF	Save 'next character' and zero flag.

0657		RST	10,CALBAS	Call FIND-INT1 to fetch the value.

0658		DEFW	+1E99

065A		CP	+10	Test for numbers greater than 15.

065C		JR	NC,0663,NREPORT-2

065E		LD	(S-STR1),A	Store stream number.

0661		POP	AF	Restore A and zero flag.

0662		RET		Finished.

'Invalid stream number'

0663	NREPORT-2	RST	20,SH-ERR	Call the error handling

0664		DEFB	+01	routine.

THE 'CHECK "M" PARAMETERS' SUBROUTINE

A return to the calling routine is made only if L-STR1 denotes the Microdrive device being used, and if D-STR1 holds a valid drive number.

0665	CHECK-M	LD	A,(L-STR1)	Fetch channel specifier.

0668		CP	+4D	Is it "M"?

066A		JP	NZ,062D,NREPORT-3	Report the error if it is not.

066D	CHECK-M-2	LD	DE,(D-STR1)	Fetch drive number.

0671		LD	A,E	Report an error if zero.

0672		OR	D

0673		JR	Z,0681,NREPORT-5

0675		INC	DE	Test against +FFFF.

0676		LD	A,E	Report an error if no drive number

0677		OR	D	has been evaluated.

0678		JR	Z,0683,NREPORT-9

067A		DEC	DE	Balance the 'INC' above.

067B		LD	HL,+0008	Is drive number within range 1..8?

067E		SBC	HL,DE

0680		RET	NC	Return if in range.

'Invalid drive number'

0681	NREPORT-5	RST	20,SH-ERR	Call the error handling

0682		DEFB	+04	routine.

'Missing drive number'

0683	NREPORT-9	RST	20,SH-ERR	Call the error handling

0684		DEFB	+08	routine.

THE 'CHECK "M" PARAMETERS AND FILENAME' SUBROUTINE

This subroutine adds to the tests performed by the previous one, also a check to N-STR1-hi, that holds +FF when no filename has been evaluated.

0685	TEST-MNAM	CALL	0665,CHECK-M	Check "m" parameters.

0688		LD 	A,(N-STR1-hi) 	Fetch high byte of name length.

068B		AND	A	Is it 0?

068C		RET	Z	Return if so.

'Missing name'

068D		RST	20,SH-ERR	Call the error handling

068E		DEFB	+06	routine.

THE 'CHECK STATION NUMBER' SUBROUTINE

A return to the calling routine is made only if D-STR1 holds a valid station number in the range 0..64.

068F	TEST-STAT	LD	DE,(D-STR1)	Fetch station number.

0693		INC	DE	Test against +FFFF.

0694		LD	A,E

0695		OR	D	No station number has been

0696		JR	Z,06A1,NREPORT-8	evaluated, so give an error

0698		DEC	DE	Balance the 'INC' above.

0699		LD	HL,+0040	Return only if the value is no

069C		SBC	HL,DE	greater than 64 decimal.

069E		RET	NC

'Invalid station number'

069F		RST	20,SH-ERR	Call the error handling

06A0		DEFB	+05	routine.

'Missing station number'

06A1	NREPORT-8	RST	20,SH-ERR	Call the error handling

06A2		DEFB	+07	routine.

THE 'EVALUATE "X";N;"NAME"' SUBROUTINE

A call to the subroutine EXPT-SPEC will evaluate the '"X";N', while the subroutine EXPT-NAME is used to evaluate the filename. A separator must be found between them.

06A3	EXPT-EXPR	CALL	05F2,EXPT-SPEC	Evaluate channel specifier and drive

				number.

06A6		CALL	05B1,SEPARATOR	A separator must be present.

06A9		JP	NZ,04B2,OREPORT-1

06AC		CALL	062F,EXPT-NAME	Evaluate the filename.

06AF		RET		Finished.

THE 'CHECK BAUD RATE' SUBROUTINE

This routine simply checks that D-STR1 holds a valid baud rate (i.e. it is not set to +FFFF). Any value below +FFFF is accepted (but later rounded to the nearest 'standard' value).

06B0	TEST-BAUD	LD	HL,(D-STR1)	Fetch baud rate.

06B3		INC	HL	Accept any value except +FFFF.

06B4		LD 	A,L

06B5		OR 	H

06B6		RET	NZ

'Missing baud rate'

06B7		RST	20,SH-ERR	Call the error handling

06B8		DEFB	+09	routine.

THE 'EVALUATE STREAM OR EXPRESSION' SUBROUTINE

This subroutine is used to deck the syntax of the MOVE Command. If the 'current' character is a hash sign (#), then a stream number is evaluated and stored into S-STR1 during runtime. Otherwise a channel expression like '"x";n ["name"]' is evaluated, and N-STR1, D-STR1 and L-STR1 are set as required and, if the channel specifier is "M" or "N", the parameters are checked to be in range.

06B9	EXPT-EXP1	RST	10,CALBAS	Advance CH-ADD.

06BA		DEFW	+0020

06BC		CP	+23	Is the present code an hash sign?

06BE		JP	Z,064E,EXPT-STRM	Evaluate stream number if so,

06C1		CALL	05F5,EXP-SPEC2	otherwise evaluate "x";n.

06C4		CALL	05B1,SEPARATOR	Jump if there is no further

06C7		JR	NZ,06CC,ENDHERE	separator.

06C9		CALL	062F,EXPT-NAME	Otherwise deal with "filename".

06CC	ENDHERE	RST	18,CHKSYNTAX	Return if syntax is being checked.

06CD		RET	Z

06CE		LD	A,(LSTR-1)	Fetch channel specifier.

06D1		CP	+54	Return if It is "T".

06D3		RET	Z

06D4		CP	+42	Return if it is "B".

06D6		RET	Z

06D7		CP	+4E	But check station no. if it is "N".

06D9		JP	Z,068F,TEST-STAT

06DC		JP	0685,TEST-MNAM	Otherwise check "m" parameters.

06DF...06FF	Unused locations (all set to .FF).

THE 'UNPAGE' SUBROUTINE

This subroutine is actually made by a single RET instruction, but the hardware detects that the Program Counter reaches the address +0700 and pages-in the 'main' ROM.

0700	UNPAGE	RET		RETurn to 'main' ROM.

THE 'EVALUATE PARAMETERS' SUBROUTINE

This very important subroutine is called to evaluate the syntax of the SAVE, LOAD, VERIFY and MERGE commands referred to the 'new' channels. The subroutine is entered with CH-ADD pointing to the command code; on exit during runtime the variables D-STR1, L-STR1, N-STR1, HD-00, HD-0B, HD-0D, HD-0F, HD-11 are properly set.

0701	EXPT-PRMS	RST	10,CALBAS	The next character is fetched from

0702		DEFW	+0020	the line.

0704		CP	+2A	It must be a '*'.

0706		JR	NZ,073C,OREP-1-2	Give an error if not a '*'.

0708		RST	10,CALBAS	Advance CH-ADD past the '*'.

0709		DEFW	+0020

070B		CALL	05F5,EXP-SPEC2	Evaluate "x";n.

070E		CALL	05B1,SEPARATOR	Check that the separator dDEs exist.

0711		JR	NZ,0716,NO-NAME	Jump if no name is to be expected.

0713		CALL	062F,EXPT-NAME	Evaluate "filename".

0716	NO-NAME	PUSH	AF	The next character is saved.

0717		LD	A,(L-STR1)	Fetch channel specifier.

071A		CP	+4E	Jump if the channel is not "N",

071C		JR	NZ,0122,NOT-NET

071E		SET	3,(FLAGS3)	otherwise signal "networking".

0722	NOT-NET	POP	AF	Restore 'next character'.

0723		CP	+0D	Jump if the statement ends with

0725		JR	Z,0750,END-EXPT	ENTER, or

0727		CP	+3A	with a colon.

0729		JR	Z,0750,END-EXPT

072B		CP	+AA	Jump if the statement continues with

072D		JR	Z,0771,SCREEN$	SCREEN$.

072F		CP	+AF	Jump with CODE.

0731		JR	Z,0789,CODE

0733		CP	+CA	Jump with LINE.

0735		JR	Z,973E,LINE

0737		CP	+E4	Jump with DATA, otherwise give

0739		JP	Z,07D2,DATA	an error report.

'Nonsense in BASIC'

073C	OREP-1-2	RST	20,SH-ERR	Call the error handling

073D		DEFB	+00	routine.

Now deal with LINE.

073E	LINE	RST	10,CALBAS	Advance CH-ADD.

073F		DEFW	+0020

0741		RST	10,CALBAS	Call EXPT-1NUM to evaluate the

0742		DEFW	+1C82	autostart line number.

0744		CALL	05B7,ST-END	Confirm end of statement, and exit

				during syntax checking.

0747		RST	10,CALBAS	Fetch the autostart line number from

0748		DEFW	+1E99	the calculator stack.

074A		LD	(HD-11),BC	Store autostart line number.

074E		JR	0753,PROG	Jump forward.

If there are no parameters (i.e. BASIC program), the syntax checking ends here.

0750	END-EXPT	CALL	05B7,ST-END	Confirm end of statement and exit

				during syntax checking.

0753	PROG	XOR	A	Store 0 into HD-00 (signalling

0754		LD	(HD-00),A	'program' file type).

0757		LD	HL,(E-LINE)	Address past the last location of

				variables area.

075A		LD	DE,(PROG)	The 'start' of data is fetched

075E		LD	(HD-0D),DE	from PROG, and stored into HD-0D.

0762		SCF		This calculates

0763		SBC	HL,DE	((E-LINE)-(PROG))-1, i.e. the length

				of the program and its variables.

0765		LD	(HD-0B),HL	The 'length' is stored.

0768		LD	HL,(VARS)	Now calculate (VARS)-(PROG),

076B		SBC	HL,DE	i.e. the length of the program only.

076D		LD	(HD-0F),HL	Store it into HD-0F.

0770		RET		Finished.

If the token is SCREEN$, the parameters are entered directly into the system variables.

0771	SCREEN$	RST	10,CALBAS	Advance CH-ADD.

0772		DEFW	+0020

0774		CALL	05B7,ST-END	Confirm end of statement and exit

				during syntax checking.

0777		LD	HL,+1B00	The 'length' of the display file

077A		LD	(HD-0B),HL	and attributes is stored.

077D		LD	HL,+4000	The start address of the display

0780		LD	(HD-0D),HL	file.

0783		LD	A,+03	Signal 'bytes' file type.

0785		LD	(HD-00),A

0788		RET		Finished.

Now deal with CODE.

0789	CODE	RST	10,CALBAS	Advance CH-ADD.

078A		DEFW	+0020

078C		CP	+0D	If there ate no further parameters,

078E		JR	Z,079A,DEFLT-0	jump to use '0' as default value.

0790		CP	+3A	Jump it there are parameters to be

0792		JR	NZ,PAR-1	evaluated (i.e. the next character

				is not a colon).

0794		BIT	5,(FLAGS3)	Give an error if SAVE "name"CODE is

0798		JR	NZ,OREP-1-2	encountered by itself

079A	DEFLT-0	RST	10,CALBAS	A call to main ROM routine 'USE-ZERO'

079B		DEFW	+1CE6	is made to use a value of zero as

				default

079D		JR	07A7,TEST-SAVE	Jump forward.

079F	PAR-1	RST	10,CALBAS	Otherwise call EXPT-1NUM to use the

07A0		DEFW	+1C82	specified value.

07A2		CALL	0581,SEPARATOR	Jump if a separator is present.

07A5		JR	Z,0782,PAR-2

07A7	TEST-SAVE	BIT	5,(FLAGS3)	Give an error if a parameter has been

07AB		JR	NZ,073C,OREP-l-2	missed in a SAVE name CODE command.

07AD		RST	10,CALBAS	Use zero also for the 2nd parameter,

07AE		DEFW	+1CE6

07B0		JR	07B8,END-CODE	Jump forward.

07B2	PAR-2	RST	10,CALBAS	Advance CH-ADD.

07B3		DEFW	+0020

07B5		RST	10,CALBAS	Evaluate the 2nd parameter by calling

07B6		DEFW	+1CB2	EXPT-1NUM.

07B8	END-CODE	RST	10,CALBAS	Call GET-CHAR to fetch the 'last'

07B9		DEFW	+0018	character in the statement.

07BB		CALL	05B7,ST-END	Confirm end of statement and exit if

				syntax is being checked.

07BE		RST	10,CALBAS	Fetch the "length" from the

07BF		DEFW	+1E99	calculator stack and

07C1		LD	(HD-0B),BC	store it.

07C5		RST	10,CALBAS	Fetch the "start" from the calculator

07C6		DEFW	+1E99	stack and store it.

07C8		LD	(HD-0D),BC

07CC		LD	A,+03	Signal 'bytes' file type.

07CE		LD	(HD-00),A

07D1		RET		Finished.

Finally the routine to evaluate DATA parameters.

07D2	DATA	BIT	6,(FLAGS3)	Jump unless attempting to MERGE

07D6		JR	Z,07DA,NO-M-ARR	an array.

'MERGE error'

07D8		RST	20,SH-ERR	Call the error handling

07D9		DEFB	+14	routine.

07DA	NO-M-ARR	RST	10,CALBAS	Advance CH-ADD to point to

07DB		DEFW	+0020	the array name.

07DD		RST	10,CALBAS	Call LOOK-VARS to look for the

07DE		DEFW	+28B2	array name.

07E0		SET	7,C	Set bit 7 of array name.

07E2		JR	NC,07F2,EXISTING	Jump if handling an existing array.

07E4		LD	HL,+0000	Signal 'using a new array'.

07E7		BIT	4,(FLAGS3)	Jump forward if LOADing the array.

07EB		JR	NZ,080E,LD-DATA

07ED		LD	(ERR-NR),+01	Give the error report 'Variable not

07F1		RST	28,ROMERR	found' if trying to SAVE a

				nonexistent array.

07F2	EXISTING	JR	Z,07F6,G-TYPE	Continue only when handling a numeric

				or alphanumeric array,

NOTE:	This test fails to exclude simple strings, but the 'bug' (present in the main ROM) is corrected at 07FF.

07F4	NONS-BSC	RST	20,SH-ERR	'Nonsense in BASIC'

07F5		DEFB	+00

07F6	G-TYPE	RST	18,CHKSYNTAX	Jump forward if syntax is

07F7		JR	Z,081C,END-DATA	being checked.

07F9		BIT	5,(FLAGS3)	Jump forward if not during a SAVE

07FD		JR	Z,0803,VR-DATA	command.

07FF		BIT	7,(HL)	Give an error if trying to SAVE

0801		JR	Z,07F4,NONS-BSC	a simple string.

0803	VR-DATA	INC	HL	Point to the 'length' of the array.

0804		LD	A,(HL)	Fetch low byte.

0805		LD	(HD-0B-lo),A	Store it.

0808		INC	HL	Point to high byte of 'length'.

0809		LD	A,(HL)	Fetch high byte.

080A		LD	(HD-0B-hi),A	Store it.

080D		INC	HL	Advance to the start of the

				array.

080E	LD-DATA	LD	A,C	Store array name into HD-0F.

080F		LD	(HD-0F-lo),A

0812		LD	A,+01	Signal 'numeric array'.

0814		BIT	6,C	Jump if really a numeric array.

0816		JR	Z,0819,NUM-ARR

0818		INC	A	Otherwise A=2 to signal

				'alphanumeric array'.

0819	NUM-ARR	LD	(HD-00),A	Store file type.

081C	END-DATA	EX	DE,HL	DE holds the 'start' of the array

				(or +0000 with 'NEW' array to be

				loaded).

081D		RST	10,CALBAS	Advance CH-ADD.

081E		DEFW	+0020

0820		CP	+29	Check that the ')' dDEs exist.

0822		JR	NZ,07F4,NONS-BSC	Report an error if not.

0824		RST	10,CALBAS	Advance CH-ADD.

0825		DEFW	+0020

0827		CALL	05B7,ST-END	Confirm end of statement and exit

				during syntax checking.

082A		LD	(HD-0D),DE	Store "start" of the array.

082E		RET		Finished.

THE 'SAVE' COMMAND SYNTAX ROUTINE

The actual saving is handled directly with "B" and "N" channels, or by SAVE-RUN if the 'N" channel is being used.

082F	SAVE-SYN	SET	5,(FLAGS3)	Signal "Saving".

0833		CALL	0701,EXPT-PRMS	Check syntax and set variables.

0836		LD	A,(L-STR1)	Fetch channel specifier.

0839		CP	+42	Jump with "B" channel being used.

083B		JR	Z,084F,SA-HEADER

083D		CP	+4E	Jump with other than "N" channel

083F		JR	NZ,0849,SAVE-M	being used (i.e. with "M" channel).

0841		CALL	068F,TEST-STAT	Check station number.

0844		CALL	0EA9,OP-TEMP-N	Open a temporary "N" channel.

0847		JR	084F,SA-HEADER	Jump forward.

0849	SAVE-M	CALL	0685,TEST-MNAM	Check "M" parameters.

		JP	1E7F,SAVE-RUN	Jump forward.

Now a loop is entered to SAVE to the "N" or "B" devices the 'header', i.e. the nine bytes taken from the system variables HD-00 to HD-11.

084F	SA-HEADER	LD	B,+09	Nine bytes are to be saved.

0851		LD	HL,+5CE6	Start of HD variables.

0854	HD-LOOP	CALL	0880,SA-BYTE	Save the byte pointed by HL.

0857		INC	HL	Each header byte in turn is saved.

0858		DJNZ	0854,HD-LOOP

085A		LD	HL,(HD-0D)	Fetch 'start of data block'.

085D		BIT	3,(FLAGS3)	Jump if "B" channel is being used.

0861		JR	Z,086E,SA-BLOCK

0863		LD	A,(HD-00)	Jump also if saving a block of memory

0866		CP	+03	(i.e. SAVE..CODE).

0868		JR	NC,086E,SA-BLOCK

086A		LD	DE,+0014	Otherwise the data to be saved have

086D		ADD	HL,DE	been moved up by '276' bytes after

				the insertion of the "N" channel.

086E	SABLOCK	LD	BC,(HD-0B)	Fetch the 'length' of the block.

0872	SA-BLK-LP	LD	A,C	Jump forward when the counter has

0873		OR	B	reached zero.

0874		JR	Z,087D,S-BLK-END

0876		CALL	0880,SA-BYTE	Send the byte pointed by HL.

0879		DEC	BC	Decrement 'length'.

087A		INC	HL	Point to next byte.

087B		JR	0872,SA-BLK-LP	Jump back until the whole block has

				been saved.

087D	S-BLK-END	JP	0988,TST-MR-M	Jump forward to send the 'end of

				file' block (only with Network).

THE 'SAVE A BYTE TO NETWORK OR RS232 LINK' SUBROUTINE

The byte pointed by the HL register pair is fetched and sent by using the "B" or the "N" channel output routing, depending upon the state of bit 3 of the FLAGS3 variable.

0880	SA-BYTE	PUSH	HL	Save HL and BC register pairs.

0881		PUSH	BC

0882		BIT	3,(FLAGS3)	Test 'networking' bit.

0886		LD	A,(HL)	Fetch the byte to be saved.

0887		JR	NZ,088E,SA-NET	Jump if network is being used.

0889		CALL	0C5A,BCHAN-OUT	Otherwise send the byte through the

				RS232 link.

088C		JR	0891,SA-B-END	Exit.

088E	SA-NET	CALL	0D6C,NCHAN-OUT	Use "N" channel output routine to

				send the byte.

0891	SA-B-END	POP	BC	Restore registers and return.

0892		POP	HL

0893		RET

TUE 'LOAD' COMMAND SYNTAX ROUTINE

The syntax is checked with a single call to the EXPT-PRMS subroutine.

0894	LOAD-SYN	SET	4,(FLAGS3)	Signal 'doing a LOAD command'.

0898		CALL 	0701,EXPT-PRMS	Check syntax and set variables.

089B		JP	08AF,LD-VF-MR	Do the LOAD.

THE 'VERIFY' COMMAND SYNTAX ROUTINE

Again the syntax checking is handled by EXPT-PRMS.

089E VERIF-SYN	SET	7,(FLAGS3)	Signal 'doing a VERIFY command'.

08A2		CALL	0701,EXPT-PRMS	Check syntax and set variables.

08A5		JP	O8AF,LD-VF-MR	Do the VERIFY.

THE 'MERGE' COMMAND SYNTAX ROUTINE

The syntax is handled by EXFT-PRMS the routine continues into the LOAD-VERIFY-MERGE routine below.

08A8	MRG-SYN	SET	6,(FLAGS3)	Signal 'doing a MERGE command'.

08AC		CALL	0701,EXPT-PRMS	Check syntax and set variables.

THE "LOAD-VERIFY-MERGE' COMMANDS ROUTINE

The action to be performed depends on the state of bits 4,6,7 of FLAGS3. The 'old' header Is expected to be in the HD area, and is immediately transferred into the D-STR2 area, while the 'new' header is loaded into the HD area.

08AF	LD-VF-MR	LD	HL,+5CE6	Start of HD area.

08B2		LD	DE,+5CDE	Start of D-STR2 area.

08B5		LD	BC,+0007	There are '7' bytes to be copied

				(HD-11 is not affected).

08B8		LDIR		Copy the 'old' header into the D-STR2

				area.

08BA		LD	A,(L-STR1)	Fetch channel specifier.

08BD		CP	+4E	Jump if network is being used.

08BF		JR	Z,08CD,TS-L-NET

08C1		CP	+42	Jump if RS232 link is being used.

08C3		JR	Z,08D3,TS-L-RS

08C5		CALL	0685,TEST-MNAM	Check "M" parameters.

08C8		CALL	1580,F-M-HEAD	Fetch first nine bytes from cartridge

				and store into HD area.

08CB		JR	08F2,TEST-TYPE	Jump forward.

08CD	TS-L-NET	CALL	068F,TEST-STAT	Check station number.

08D0		CALL	0EA9,OP-TEMP-N	Open a temporary "N" channel.

08D3	TS-L-RS	LD	HL,+5CE6	Start of HD area.

08D6		LD	B,+09	Nine bytes are now expected.

08D8	LD-HEADER	PUSH	HL	Save HL and BC register pairs.

08D9		PUSH	BC

08DA		BIT	3,(FLAGS3)	Jump if using RS232 link.

08DD		JR	Z,08E7,LD-HD-RS

08E0	LD-HD-NET	CALL	0D12,NCHAN-IN	Fetch a byte from "N" channel.

08E3		JR	NC,08E0,LD-HD-NET	Repeat until the byte is acceptable.

08E5		JR	08EC,LD-HDR-2	Jump forward.

08E7	LD-HD-RS	CALL	0B81,BCHAN-IN	Fetch a byte from RS232 link.

08EA		JR	NC,08E7,LD-HD-RS	Repeat until the byte is acceptable.

08EC	LD-HDR-2	POP	BC	Restore registers.

08ED		POP	HL

08EE		LD	(HL),A	Store the byte into the HO area.

08EF		INC	HL	Advance the pointer.

08F0		DJNZ	08D8,LD-HEADER	Go around the loop again.

08F2	TEST-TYPE	LD	A,(5CDE)	Fetch 'old' type from D-STR2

08F5		LD	B,A	area and store into B register.

08F6		LD	A,(HD-00)	Fetch 'new' file type.

08F9		CP	B	Compare with the 'old' one.

08FA		JR	NZ,0902,NREPORT-N	Give an error if it does not match.

08FC		CP	+03	Jump if handling a block of bytes.

08FE		JR	Z,0911,T-H-CODE

0900		JR	C,0904,TST-MERGE	Jump with other types (but refuse

				types greater than 3).

'Wrong file type'

0902	NREPORT-N	RST	20,SH-ERR	Call the error handling

0903		DEFB	+16	routine.

0904	TST-MERGE	BIT	6,(FLAGS3)	Jump if doing a MERGE.

0908		JR	NZ,0967,MERGE-BLK

090A		BIT	7,(FLAGS3)	Jump if not doing a VERIFY (i.e.

090E		JP	Z,09A3,LD-PR-AR	doing a LOAD).

Now deal with loading of files of type 3 (i.e. CODE and SCREENS), or verifying of all file types.

0911	T-M-CODE	BIT	6,(FLAGS3)	Allow for the loading or

0915		JR	Z,0919,LD-BLOCK	verifying, but not for the mergeing

				of a 'CODE' block.

'MERGE error'

0917		RST	20,SH-ERR	Call the error handling

0918		DEFB	+14	routine.

0919	LD-BLOCK	LD	HL,(+5CDF)	Get 'old' length from D-STR2.

091C		LD	DE,(HD-0B)	Get 'new' length.

0920		LD	A,H	Jump forward if 'old' length is 0

0921		OR	L	(i.e. not specified in the command).

0922		JR	Z,0932,LD-BLK-2

0924		SBC	HL,DE	Accept the 'old' length if it is

0926		JR	NC,0932,LD-BLK-2	greater than or equal to the

				'new' one.

0928		BIT	4,(FLAGS3)	But give an error if attempting

092C		JR	Z,0930,NREPORT-L	to LOAD or VERIFY a larger block

				than has been requested.

'CODE error'

092E		RST	20,SH-ERR	Call the error handling

092F		DEFB	+13	routine.

'Verification has failed'

0930	NREPORT-L	RST	20,SH-ERR	Call the error handling

0931		DEFB	+15	routine.

0932	LD-BLK-2	LD	HL,(5CE1)	Get 'old' start from D-STR2.

0935		LD	A,(IX+4)	Fetch specifier from the channel area.

0938		CP	+CD	Jump if not "M"+80, i.e. not a

093A		JR	NZ,0941,LD-BLK1	temporary "M" channel.

093C		LD	HL,(5CE4)	But if the "M" channel is being

				used, the 'start' has been stored

				into +5CE4 (see +1583).

093F		JR	0952,LD-BLK4	Jump forward.

0941	LD-BLK-3	BIT	3,(FLAGS3)	Jump if not using the network.

0945		JR	Z,0952,LD-BLK-4

0947		LD	A,(HD-00)	Jump if it is a block of bytes.

094A		CP	+03

094C		JR	Z,0952,LD-BLK-4

094E		LD	BC,+01l4	Otherwise the data has been moved

0951		ADD	HL,BC	up by '276' bytes after the

				insertion of the "N" channel.

0952	LD-BLK-4	LD	A,H	Use 'old' start if it has been

0953		OR	L	specified in the command,

0954		JR	NZ,0959,LD-BLK-5	otherwise use 'new' start.

0956		LD	HL,(HD-0D)

0959	LD-BLK-5	LD	A,(HD-00)	Use the 'start' in HL for types

095C		AND	A	other than 'program'.

095D		JR	NZ,0962,LD~NO-PGM

095F		LD	HL,(PROG)	But with 'program' type, the 'start'

				is pointed by PROG.

0962	LD-NO-PGM	CALL	0A5C,LV-ANY	Do the actual LOADing or VERIFYing.

0965		JR	0988,TST-MR-M	Jump forward to close the channel

				used.

Now consider the MERGEing of a program.

0967	MERGE-BLK	LD	A,(HD-11-hi)	Continue only if the content of

096A		AND	+C0	HD-11 is sufficiently high, i.e. if

096C		JR	NZ,0973,NO-AUTOST	the program was not saved with

				'autostart'

096E		CALL	17B9,RCL-T-CH	Otherwise reclaim channels and give

0971		RST	20,SH-ERR	a 'MERGE error'.

0972		DEFB	+14

0973	NO-AUTOST	LD	BC,(HD-0B)	Fetch 'length' of program to be

0977		PUSH	BC	merged and save it.

0978		INC	BC	Allows for a further location to

				insert the 'end marker'.

0979		RST	10,CALBAS	Call BC-SPACES to make the

097A		DEFW	+0030	required room in workspace.

097C		LD	(HL),+80	Mark the end of the space.

097E		EX	DE,HL	HL now points to the start of the

				space created.

097F		POP	DE	Restore length of program.

0980		PUSH	HL	Save 'start' pointer.

0981		CALL	0A5C,LV-ANY	Load the program in the workspace.

0984		POP	HL	Restore 'start' pointer.

0985		RST	10,CALBAS	Do the mergeing with the existing

0986		DEFW	+08CE	program by entering into the main

				ROM 'MERGE' control routine.

0988	TST-MR-M	LD	A,(IX+4)	Jump if the specifier is not "M"+80

098B		CP	+CD	i.e. if other than "M" channel has

098D		JR	NZ,0994,TST-MR-N	been used.

098F		CALL	12A9,CLOSE-M2	Close the "M" channel.

0992		JR	09A0,MERGE-END	Jump forward.

0994	TST-MR-N	BIT	3,(FLAGS3)	Exit immediately if the "B" output

0998		JR	Z,09A0,MERGE-END	has been used.

099A		CALL	0EF5,SEND-NEOF	Why?

099D		CALL	17B9,RCL-T-CH	Reclaim the channel.

09A0 MERGE-END	JP	05C1,END1	Finished.

The final branch of the routine deals with the LOADIng of a program or an array.

09A3	LD-PR-AR	LD	DE,(HD-0B)	Fetch 'new' length.

09A7		LD	HL,(5CE1)	Fetch 'old' start (set to 0 when

				loading a 'new' array).

09AA		PUSH	HL	Save it temporarily.

09AB		LD	A,H	Jump if not a 'new' array.

09AC		OR	L

09AD		JR	NZ,09B5,LD-PROG

09AF		INC	DE	Increment 'length' by 3, i.e. allows

09B0		INC	DE	for the insertion of array name and

09B1		INC	DE	two-byte length.

09B2		EX	DE,HL	Move 'length' into HL.

09B4		JR	09BE,TST-SPACE	Jump forward.

09B5	LD-PROG	LD	HL,(5CDF)	Fetch 'old' length (i.e. length of

				existing program or array) from

				D-STR2 area.

09B8		EX	DE,HL	HL holds the 'new' length.

09B9		SCF		Jump forward if the program (or

09BA		SBC	HL,DE	array) being loaded is no longer

09BC		JR	C,09C7,TST-TYPE	than the existing one.

09BE	TST-SPACE	LD	DE,+0005	Otherwise a check must be made to

09C1		ADD	HL,DE	ensure that there is sufficient space

09C2		LD	B,H	in memory for the program (or array)

09C3		LD	C,L	to be loaded, with a call to main ROM

09C4		RST	10,CALBAS	'TEST-ROOM' subroutine.

09C5		DEFW	+1F05

09C7	TST-TYPE	POP	HL	Restore 'old' start (+0000 when

				handling a 'new' array).

09C8		LD	A,(HD-00)	Jump if 'type' indicates a

09CB		AND	A	BASIC program (+00).

09CC		JR	Z,0A15,SET-PROG

09CE		LD	A,H	Jump unless an 'old' array is to be

09CF		OR	L	erased before

09D0		JR	Z,09F3,CRT-NEW	loading the 'new' one.

09D2		LD	A,(IX+4)	If the channel specifier denotes

09D5		CP	+CD	other than temporary "M" channels

09D7		JR	NZ,09DE,T-LD-NET	(i.e. "M"+80H), the 'start' is

				already held in HL.

09D9		LD	HL,(5CE4)	Otherwise the start address of the

				array is fetched from D-STR2 area.

09DC		JR	09E8,RCLM-OLD

09DE	T-LD-NET	BIT	3,(FLAGS3)	Jump if using the 515232 link.

09E2		JR	Z,09E8,RCLM-OLD

09E4		LD	DE,+0114	Otherwise the array has been moved

09E7		ADD	HL,DE	'276' bytes up after the insertion

				of "N" channel.

09E8	RCLM-OLD	DEC	HL	Points to the high byte of 'array

				length'.

09E9		LD	B,(HL)	Fetch high byte.

09EA		DEC	HL	Points to the low byte.

09EB		LD	C,(HL)	Fetch low byte.

09EC		DEC	HL	Points to the array name.

09ED		INC	BC	Include 'length' and 'name' in the

09EE		INC	BC	array length.

09EF		INC	BC

09F0		RST	10,CALBAS	Call RECLAIM-2 to delete the array.

09F1		DEFW	+19E8

09F3	CRT-NEW	LD	HL,(E-LINE)	Points to the end of variables area.

09F6		DEC	HL

09F7		LD	BC,(HD-0B)	Fetch the length of the array to be

				loaded.

09FB		PUSH	BC	Save it.

09FC		INC	BC	Include in the length one byte for

09FD		INC	BC	array name and two for 'length of

09FE		INC	BC	array

09FF		LD	A,(5CE3)	Fetch array name from D-STR2 area.

0A02		PUSH	AF	Save it briefly.

0A03		RST	10,CALBAS	Call MAKE-ROOM to create the space

0A04		DEFW	+1655	for the array.

0A06		INC	HL	Points to the first 'new' location

				inserted.

0A07		POP	AF	Restore array name and store into

0A08		LD	(HL),A	the 1st location.

0A09		POP	DE	Fetch 'array length'.

0A0A		INC	HL	Store it into the following two

0A0B		LD	(HL),E	locations.

0A0C		INC	HL

0A0D		LD	(HL),D

0A0E		INC	HL	The array will be loaded from this

				location.

0A0F	END-LD-PR	CALL	0A5C,LV-ANY	Load array or BASIC program.

0A12		JP	0988,TST-MR-M	Jump back to close the channel.

If the file loaded is a program, the space required is to be crested and some actions to be performed.

0A15	SET-PROG	RES	1,(FLAGS3)	Signal 'no autostart'

0A19		LD	DE,(PROG)	Fetch start of existing program.

0A1D		LD	HL,(E-LINE)	Fetch end of existing program.

0A20		DEC	HL

0A21		RST	10,CALBAS	Call RECLAIM-1 in the main ROM to

0A22		DEFW	+19E5	delete the program.

0A24		LD	BC,(HD-0B)	Fetch length of program and variables.

0A28		LD	HL,(PROG)	Fetch start address of program.

0A2B		RST	10,CALBAS	Call MAKE-ROOM to create the

0A2C		DEFW	+1655	required space.

0A2E		INC	HL	Points to the first location.

0A2F		LD	BC,(HD-0F)	Fetch program length.

0A33		ADD	HL,BC	Calculate and store the start of

0A34		LD	(VARS),HL	variables area.

0A37		LD	A,(HD-11-hi)	This is set to +FF when no autostart

0A3A		LD	H,A	is required.

0A3B		AND	+C0

0A3D		JR	NZ,0A4E,NO-AUTO	Jump with 'no autostart'.

0A3F		SET	1,(FLAGS3)	Signal 'autostart' (see +0049).

0A43		LD	A,(HD-11-lo)	Fetch low byte of autostart line

0A46		LD	L,A	number.

0A47		LD	(NEWPPC),HL	Store autostart line no.

0A4A		LD	(NSPPC),+00	Clear NSPPC to signal 'jump'.

0A4E	NO-AUTO	LD	HL,(PROG)	Fetch start address of program area.

0A51		LD	DE,(HD-0B)	Fetch program length.

0A55		DEC	HL	Make DATADD point to the last byte

0A56		LD	(DATADD),HL	of the CHANS area.

0A59		INC	HL	Balance the DEC above.

0A5A		JR	0A0F,END-LD-PR	Jump back to LOAD the new program.

THE 'LOAD OR VERIFY' SUBROUTINE

This subroutine is used to LOAD or VERIFY (depending upon the state of bit 7 of FLAGS3 system variable) a block of bytes. It must be entered with the 'start' and the 'length' in the HL and DE register pairs, and with all system variables properly set.

0A5C	LV-ANY	LD	A,D	Return if 'length' is zero.

0A5D		OR	E

0A5E		RET	Z

0A5F		LD	A,(IX+4)	Fetch channel specifier and jump if

0A62		CP	+CD	handling with RS232 or network.

0A64		JR	NZ,0A6A,LV-BN

0A66		CALL	15A9,LV-MCH	LOAD or VERIFY from Microdrive.

0A69		RET		Finished.

0A6A	LV-BN	PUSH	HL	Save 'start' and 'length'.

0A6B		PUSH	DE

0A6C		BIT	3,(FLAGS3)	Jump if RS232 link is being used.

0A70		JR	Z,0A79,LV-B

0A72	LV-N	CALL	0D12,NCHAN-IN	Fetch a byte by using the "N" channel

0A75		JR	NC,0A72,LV-N	Input routine.

0A77		JR	0A7E,LV-BN-E	Jump forward.

0A79	LV-B	CALL	0B81,BCHAN-IN	Fetch a byte by using the "B" channel

0A7C		JR	NC,0A79,LV-B	input routine.

0A7E	LV-BN-E	POP	DE	Restore 'length' and decrease it.

0A7F		DEC	DE

0A80		POP	HL	Restore 'start'.

0A81		BIT	7,(FLAGS3)	Jump when VERIFYING.

0A85		JR	NZ,0A8A,VR-BN

0A87		LD	(HL),A	The actual LOAD, i.e. store the

				received byte.

0A88		JR	0A8F,LVBN-END	Jump forward.

0A8A VR-BN	CP	(HL)	The actual VERIFY, i.e. compare the

				received byte with that held in

				memory.

0A8B		JR	Z,0A8F,LVBN-END	Continue only if the bytes are equal.

'Verification has failed'

0A8D		RST	20,SH-ERR	Call the error handling

0A8E		DEFB	+15	routine.

0A8F	LVBN-END	INC	HL	Move 'start' on to address the next

				location.

0A90		LD	A,E	Repeat until 'length' has reached 0.

0A91		OR	D

0A92		JR	NZ,0A6A,LV-BN

0A94		RET 		Finished.

THE 'LOAD "RUN" PROGRAM' ROUTINE

First the various system variables are properly set, then a nine-byte header is fetched from the first record of the program called 'run'. The routine continues

into the middle of the LOAD~VERIFY-MERGE commands routine.

0A95	LOAD-RUN	LD	BC,+0001	Load from drive 1.

0A98		LD	(D-STR1),BC

0A9C		LD	BC,+0003	The filename 'run' is three

0A9F		LD	(N-STR1),BC	characters in length.

0AA3		LD	BC,+0AC6	The filename is stored from this

0AA6		LD	(N-STR1+2),BC	location.

0AAA		SET	4,(FLAGS3)	Signal 'loading'.

0AAE		CALL	0753,PROG	Set HD variablea as required.

0AB1		LD	HL,+5CE6	Copy 'old' header into D-STR2 area.

0AB4		LD	DE,+5CDE

0AB7		LD	BC,+0009

0ABA		LDIR		Clear the 'jump' signal set by using

0ABC		SET	7,(NSPPC)	the RUN command.

0AC0		CALL	1580,F-M-HEAD	Load the 'new' 9-byte header.

0AC3		JP	08F2,TEST-TYPE	Jump back in the middle of the

				LOAD-VERIFY-MERGE commands routine.

0AC6		DEFM	"run"	The 'run' filename.

The RS-232 link routines

THE 'SET "BAUD" SYSTEM VARIABLE' ROUTINE

This routine is entered with a baud rate in the range 0. .65534 in the system

variable D-STR1. It rounds the value to the nearest 'standard' value and sets the BAUD system variable with the appropriate timing constant. It is used by the 'FORMAT' command routine.

0AC9	SET-BAUD	LD	BC,(D-STR1)	Fetch baud rate.

0ACD		LD	HL,+0AEF	Start of RS232 timing constants table.

0AD0	NXT-ENTRY	LD	E,(HL)	Fetch an entry in the DE register

0AD1		INC	HL	pair.

0AD2		LD	D,(HL)

0AD3		INC	HL

0AD4		EX	DE,HL	Pass the value to HL.

0AD5		LD	A,H	Fetch high byte.

0AD6		CP	+48	Jump if the end of the table has been

0AD8		JR	NC,0AE4,END-SET	reached.

0ADA		AND	A	Jump also if this value is greater

0ADB		SBC	HL,BC	than or equal to the supplied one.

0ADD		JR	NC,0AE4,END-SET

0ADF		EX	DE,HL	Restore the 'pointer' in HL.

0AE0		INC	HL	Skip the constant and jump back

0AE1		INC	HL	to examine the next table entry.

0AE2		JR	0AD0,NXT-ENTRY

0AE4	END-SET	EX	DE,HL	Restore the pointer in HL.

0AE5		LD	E,(HL)	Fetch the timing constant.

0AE6		INC	HL

0AE7		LD	D,(HL)

0AE8		LD	(BAUD),DE	Store the constant.

0AEC		JP	05C1,END1	Finished.

THE 'RS232 TIMING CONSTANTS' TABLE

The '9' entries in this table are the 'standard' baud rate values (from 75 to 19200), each one followed by the 'timing constant' to be stored in the BAUD system variable.

0AEF		DEFW	+0032	First baud rate=50 (but the constant

0AF1		DEFW	+0A82	is for 75 baud).

0AF3		DEFW	+006E	2nd baud rate=110.

0AF5		DEFW	+04C5	Constant for 110 baud.

0AF7		DEFW	+012C	3rd baud rate=300.

0AF9		DEFW	+01BE	Constant for 300 baud.

0AFB		DEFW	+0258	4th baud rate=600.

0AFD		DEFW	+00DE	Constant.

0AFF		DEFW	+04B0	5th baud rate=1200.

0B01		DEFW	+006E	Constant.

0B03		DEFW	+0960	6th baud rate=2400.

0B05		DEFW	+0036	Constant.

0B07		DEFW	+12C0	7th baud rate=4800.

0B09		DEFW	+001A	Constant.

0B0B		DEFW	+2580	8th baud rate=9600.

0B0D		DEFW	+000C	Constant.

0B0F		DEFW	+4B00	Last baud rate=l9200.

0B11		DEFW	+0005	Constant.

THE 'OPEN RS232 CHANNEL IN CHANS AREA' SUBROUTINE

This subroutine opens a permanent "B" or "T" channel (depending upon the specifier held in L-STR1) at the end of the CHANS area. On return, the DE

register pair will hold the start of the channel.

0B13	OP-RS-CH	LD	HL,(PROG)	The start address

0B16		DEC	HL	of the channel.

0B17		LD	BC,+000B	The channel is '11' bytes in length.

0B1A		PUSH	BC

0B1B		RST	10,CALBAS	Call MAKE-ROOM to create the required

0B1C		DEFW	+1655	space.

0B1E		POP	BC	Restore 'length'.

0B1F		PUSH	DE	Save address of last byte in the

				inserted area.

0B20		CALL	1691,REST-N-AD	Restore start address of 'filename' if

				it has been moved up after the

				insertion of the new space.

0B23		POP	DE	Restore 'end of channel' address.

0B24		LD	HL,+0B6E	Last byte in the "T" channel data

				table.

0B27		LD	BC,+000B	Length of the table.

0B2A		LDDR		Copy the 'T' channel data.

0B2C		INC	DE	Point to the 1st location of the

				channel.

0B2D		LD	A,(L-STR1)	Fetch channel specifier.

0B30		CP	+42	Return if the requested channel was

0B32		RET	NZ	not the 'B' channel.

0B33		PUSH	DE	Save channel start address.

0B34		LD	HL,+0005	Point to the 'shadow ROM output

0B37		ADD	HL,DE	routine' pointer.

0B38		LD	DE,+0C5A	the address of the BCHAN—OUT routine.

0B3B		LD	(HL),E	Store the low byte.

0B3C		INC	HL

0B3D		LD	(HL),D	Store the high byte.

0B3E		INC	HL	Point to the 'shadow ROM input

				routine' pointer.

0B3F		LD	DE,+0B75	The address of the B—INPUT routine,

0B42		LD	(HL),E	Store the low byte.

0B43		INC	HL

0B44		LD	(HL),D	Store the high byte.

0B45		POP	DE	Restore channel start address.

0B46		RET		Finished.

THE 'ATTACH CHANNEL TO A STREAM' ROUTINE

The entry point is OP-RSCHAN if the channel is "B" or "T", otherwise the routine is entered at OP-STREAM with "N" channel (from 0EA6), with DE holding the channel start address. The correct displacement is calculated for the stream whose number is held in S-STR1, and stored in the STRMS area.

0B47	OP-RSCHAN	CALL	0Bl3,OP-RS-CH	Create the channel area.

0B4A	OP-STREAM	LD 	HL,(CHANS) 	Calculate the displacement to be

0B4D		DEC	HL	stored in STRMS.

0B4E		EX 	DE,HL

0B4F		AND	A

0B50		SBC	HL,DE

0B52		EX	DE,HL	Pass the displacement to DE.

0B53		LD	HL,+5C16	Location in STRMS for stream 0.

0B56		LD	A,(S-STR1)	Fetch stream number and

0B59		RLCA		double it.

0B5A		LD	C,A	Move the offset to the BC register

0B5B		LD	B,+00	pair.

0B5D		ADD	HL,BC	Index into the STRMS area.

0B5E		LD	(HL),E	Store the displacement.

0B5F		INC	HL

0B60		LD	(HL),D

0B61		JP	05C1,END1	Finished.

THE '"T" CHANNEL DATA' TABLE

The '11' bytes that composes a "T" RS232 channel are as follows:

0B64		DEFW	+0008	Main ROM 'output' routine.

0B66		DEFW	+0008	Main ROM 'input' routine.

0B68		DEFB	+54	"T" (channel specifier).

0B69		DEFW	+0C3C	Shadow ROM 'output' routine.

0B6B		DEFW	+0B6F	Shadow ROM 'input' routine.

0B6D		DEFW	+000B	Length of this channel.

THE	'"T" CHANNEL INPUT' ROUTINE

The actual 'input' is handled by the CALL-INP routine; the service routine is TCHAN-IN below.

0B6F	T-INPUT	LD	HL,+0B7B	Address of TCHAN-IN routine.

0B72		JP	0CBD,CALL-INP	Jump forward.

THE '"B" CHANNEL INPUT' ROUTINE

As with the "T" channel, the 'input' is handled by CALL-INP; however the service routine is BCHAN-IN.

0B75	B-INPUT	LD	HL,+0B81	Address of BCHAN-IN routine.

0B78		JP	0CBD,CALL-INP	Jump forward.

THE '"T" CHANNEL INPUT' SERVICE ROUTINE

The only difference in respect to the "B" input is that the most significant bit of the received character is always cleared.

0B7B	TCHAN-IN	CALL 0B81,BCHAN-IN	Use the "B" channel input service

				routine.

0B7E		RES 7,A	Accept only codes in the range +00...

				+7F (ASCII 7 bit).

0B80		RET		Finished.

THE '"B" CHANNEL INPUT' SERVICE ROUTINE

This subroutine is also called by using the hook code +1D; it always returns

carry set if an acceptable byte has been read in the A register from the RS232 link, or zero flag set when no byte has been read.

0B81	BCHAN-IN	LD	 HL,+5CC7	Fetch contents of SER-FL-lo system

0B84		LD	 A,(HL)	variable.

0B85		AND	 A	Proceed in receiving the byte if it

0B86		JR	 Z,0B8E,REC-BYTE	holds zero.

0B88		LD	 (HL),+00	Otherwise clear SER-FL-lo and fetch

0B8A		INC	 HL	the byte from SER-FL-hi.

0B8B		LD	A,(HL)

0B8C		SCF		Signal 'acceptable code'.

0B8D		RET

0B8E	REC-BYTE	LD	A,+7F	Read port +7FFE.

0B90		IN	A,(+FE)

0B92		RRCA		Rotate bit 0 into carry.

0B93		JR	C,0B9A,REC-PROC	Jump if SPACE not being pressed.

0B95		LD	(ERR-NR),+14	Otherwise give the 'Break into

0B99		RST	28,ROMERR	program' error report.

0B9A	REC-PROC	DI		Disable interrupts.

0B9B		LD	A,(IOBORD)	Fetch new border colour.

0B9E		OUT	(+FE),A	Change border colour.

0BA0		LD	DE,(BAUD)	Fetch timing constant.

0BA4		LD	HL,+0320	Repeat '800' times the test.

0BA7		LD	B,D	Copy timing constant into the BC

0BA8		LD	C,E	register pair.

0BA9		SRL	B	Make BC hold (constant/2).

0BAB		RR	C

0BAD		LD	A,+FE	Make high the CTS line.

0BAF		OUT	(+EF),A

Now a loop is entered to check if a 'start bit'	is found from the TXdata line. A 'start bit' is detected if the TXdata line is high for at least '77' T cycles. If after about 25 ms no 'start bit' is found, the routine continues forward.

0BB1	READ-RS	IN	A,(+F7)	Read TXdata line.

0BB3		RLCA		Shift state into carry.

0BB4		JR	NC,0BC5,TST-AGAIN	Jump if the line has a low level.

0BB6		IN	A,(+F7)	Repeat the test three times, i.e. make

0BB8		RLCA		sure that TXdata is still high after

0BB9		JR	NC,0BC5,TST-AGAIN	77 T cycles,

0BBB		IN	A,(+F7)

0BBD		RLCA

0BBE		JR	NC,0BC5,TST-AGAIN

0BC0		IN	A,(+F7)

0BC2		RLCA

0BC3		JR	C,0BD1,START-BIT	Jump if the beginning of a 'start bit'

				is found.

0BC5	TST-AGAIN	DEC	HL	Decrease the counter.

0BC6		LD	A,H	Repeat the test until the counter

0BC7		OR	L	reaches zero.

0BC8		JR	NZ,0BB1,READ-RS

0BCA		PUSH	AF	Save zero flag set.

0BCB		LD	A,+EE	Make the CTS line low again.

0BCD		OUT	(+EF),A

0BCF		JR	0BF0,WAIT-1	Jump forward to repeat the test.

This loop is used to read the eight data bits that follows the 'start' bit. First, a delay equal to ((BAUD)*1.5)*26 T cycles is entered, so the first reading is made at the middle of the first data bit. The seven subsequent readings are separated by a delay of (47+26*(BAUD)) T cycles, that is the length of each bit.

0BD1	START-BIT	LD	H,B	Get (BAUD/2) into HL.

0BD2		LD	L,C

0BD3		LD	B,+80	Set a marker into bit 7.

0BD5		DEC	HL	Decrease HL three times, i.e. short

0BD6		DEC	HL	the loop by 78 T cycles, balancing

0BD7		DEC	HL	the time spent before.

0BD8	SERIAL-IN	ADD	HL,DE	Add (BAUD) to HL.

0BD9		NOP		Wait 4 T cycles.

0BDA	BD-DELAY	DEC	HL	Insert a delay (26*BAUD) T cycles in

0BDB		LD	A,H	length.

0BDC		OR	C

0BDD		JR	NZ,0BDA,BD-DELAY

0BDF		ADD	A,+00	Wait 7 T cycles.

0BE1		IN	A,(+F7)	Read a bit.

0BE3		RLCA		Shift it into carry flag, then into

0BE4		RR	B	the B register.

0BE6		JR	NC,0BD8,SERIAL-IN	Repeat until the 'marker' is found

				(i.e., 8 bits have been read),

0BE8		LD	A,+EE	Make the CTS line having a low level.

0BEA		OUT	(+EF),A

0BEC		LD	A,B	Fetch the received byte.

0BED		CPL		Complement it (the bits are sent

				inverted through the RS232 link).

0BEE		SCF		Signal 'acceptable codes' when exit.

0BEF		PUSH	AF	Save the byte and carry flag.

0BF0	WAIT-1	ADD	HL,DE	Make HL hold (BAUD).

0BF1	WAIT-2	DEC	HL	Wait until the first stop bit is

0BF2		LD	A,H	finished.

0BF3		OR	L

0BF4		JR	NZ,0BF1,WAIT-2

0BF6		ADD	HL,DE

0BF7		ADD	HL,DE

0BF8		ADD	HL,DE	HL now holds (BAUD)*3.

Now a loop similar to that at 0BB1 is entered. If the TXdata line is found high for at least 77 T cycles, the 'sending' device is sending the 'start' bit for a second byte, even if the CTS line has a low signal level. This byte is to be read and stored into SER-FL.

0BF9	T-FURTHER	DEC	HL 	Decrease counter.

0BFA		LD	A,L 	Repeat test until it has reached 0.

0BFB		OR	H

0BFC		JR	Z,0C36,END-RS-IN	Exit if there is no further byte to

				be received.

0BFE		IN	A,(+F7)	Read TXdata line.

0C08		RLCA		Shift received bit into carry.

0C01		JR	NC,0BF9,T-FURTHER	Jump back with TXdats low.

0C03		IN	A,(+F7)	Otherwise repeat the test three times

0C05		RLCA		to ensure that TXdata is still

0C06		JR	NC,0BF9,T-FURTHER	high after 77 T cycles,

0C08		IN	A,(+F7)

0C0A		RLCA

0C0B		JR	NC,0BF9,T-FURTMER

0C0D		IN	A,(+F7)

0C0E		RLCA

0C10		JR	NC,0BF9,T-FURTHER

0C12		LD	H,D	Fetch timing constant into HL.

0C13		LD	L,E

0C14		SRL	H	Calculate (BAUD)/2 into HL.

0C16		RR	L

The next instructions are the same as those stored from 0BD3 above, so they are not commented.

0C18		LD	B,+00

0C1A		DEC	HL

0C1B		DEC	HL

0C1C		DEC	HL

0C1D	SER-IN-2	ADD	HL,DE

0C1E		NOP

0C1F	BD-DELAY2	DEC	HL

0C20		LD	A,H

0C21		OR	L

0C22		JR	NZ,0C1F,BD-DELAY2

0C24		ADD	A,+00

0C26		IN	A,(+F7)

0C28		RLCA

0C29		RR	B

0C2B		JR	NC,0C1D,SER-IN-2

Finally, the last byte received is stored into SER-FL, and the first one returned into the A register.

0C2D		LD	HL,+5CC7	Points to SER-FL-lo

0C30		LD	(HL),+01	Set it to +01, indicating that

				SER-FL-hi holds a valid byte.

0C32		INC	HL	Points to SER-FL-hi.

0C33		LD	A,B		Fetch the received byte.

0C34		CPL		Complement it and store into

0C35		LD	(HL),A	SER-FL-hi.

0C36	END-RS-IN	CALL	0CA9,BORDREST	Restore border colour.

0C39		POP	AF	Restore first byte and flags.

0C3A		EI		Enable interrupts.

0C3B		RET		Finished.

THE '"T" CHANNEL OUTPUT' ROUTINE

The "t" channel output involves the 'sending' over the RS232 link of the character held into the A register, provided that it is within the range +20...+7F. Characters from +80 to +A4 are sent as '?', while tokens are de-tokenised. Codes lower than +20 are ignored, except for +0D that sends both CR and LF codes. The routine unfortunately contains a mistake as it does not suppress the 'leading space' flag (bit 0 of FLAGS) as required. The result is that when sending two tokens (i.e., THEN GOTO), two spaces are inserted between them, instead of one. The correct routine should include the following two instructions after the final 'RET C': 'JR NZ,BCHAN-OUT' and 'SET 0,(FLAGS)', and a 'RES 0,(FLAGS)' before the 'CP +7F'.

0C3C	TCHAN-OUT	CF	+A5	Jump if the code is not a token code.

0C3E		JR	C,0C46,NOT-TOKEN

0C40		SUB	+A5	Reduce range of token,

0C42		RST	10,CALBAS	and detokenise it by calling

0C43		DEFW	+0C10	recursively this routine via main ROM

0C45		RET		'PO-TOKENS' routine.

0C46	NOT-TOKEN	CP	+7F	Jump if the character is not a

0C48		JR	C,0C4C,NOT-GRAPH	graphic character.

0C4A		LD	A,+3F	Otherwise send a '?'.

0C4C	NOT-GRAPH	CP	+0D	Is the code 'ENTER'?

0C4E		JR	NZ,0C57,NOT-CR	Jump if not.

0C50		CALL	0C5A,BCHAN-OUT	Otherwise send the CR code.

0C53		LD	A,+0A	Follow it with a linefeed code.

0C55		CALL	0C5A,BCHAN-OUT

0C57	NOT-CR	CP	+20	Ignore all codes lower than +20,

0C59		RET	C	otherwise use BCHAN-OUT below to send

				the character.

THE '"B" CHANNEL OUTPUT' ROUTINE

The 8 bits that forms the byte held in the A register are sent inverted through the RS232 link, after an initial 'start' bit (high), and followed by two 'stop' bits (or rather a 'double length' stop bit, with low signal level). As with 'b' channel input, the bits have a fixed length, depending upon the selected baud rate. This subroutine is also called by the 'hook code' +1E.

0C5A	BCHAN-OUT	LD	B,+0B	Counts '11' bits.

0C5C		CPL		Invert the eight data bits.

0C5D		LD	C,A	C holds the byte to be sent.

0C5E		LD	A,(IOBORD)	Fetch new border colour.

0C61		OUT	(+FE),A	Change border colour.

0C63		LD	A,+EF	Reset CTS and select RS232.

0C65		OUT	(+EF),A

0C67		CPL

0C68		OUT	(+F7),A	Make RXdata have a low signal level.

0C6A		LD	HL,(BAUD)	Fetch timing constant.

0C6D		LD	D,H	Copy into DE register pair.

0C6E		LD	E,L

0C6F	BD-DEL-1	DEC	DE	Firstly wait (26*(BAUD)) T cycles.

0C70		LD	A,D

0C7l		OR	E

0C72		JR	NZ,0C6F,BD-DEL-1

0C74	TEST-DTR	LD	A,+7F	Read port +7FFE (SPACE key).

0C76		IN	A,(+FE)

0C78		OR	+FE	Read port +FEFE (CAPS SHIFT key) only

0C7A		IN	A,(+FE)	if SPACE is being pressed.

0C7C		RRA		Test bit 0.

0C7D		JP	NC,0CB4,BRK-INOUT	Give an error if BREAK is pressed.

0C80		IN	A,(+EF)	Read DTR line.

0C82		AND	+08	Only bit 3.

0C84		JR	Z,0C74,TEST-DTR	Jump back until DTR is found high.

0C86		SCF		Set carry flag (start bit).

0C87		DI		Disable interrupts.

0C88	SER-OUT-L	ADC	A+00	In fact, shift carry into bit 0 of

				accumulator.

0C8A		OUT	(+F7),A	Send this bit over RS232 link.

0C8C		LD	D,H	Copy timing constant into DE.

0C8D		LD	E,L

0C8E	BD-DEL-2	DEC	DE	Wait 26*(BAUD) T cycles after having

0C8F		LD	A,D	sent each bit.

0C90		OR	E

0C9l		JR	NZ,0C8E,BD-DEL-2

0C93		DEC	DE	Wait 6 T cycles.

0C94		XOR	A	Clear A for next pass.

0C95		SRL	C	Shift the bit to be sent into carry.

0C97		DJNZ	0C88,SER-OUT-L	Loop for all 11 bits.

0C99		DI		Enable interrupts.

0C9A		LD	A,+01

0C9C		LD	C,+EF

0C9E		LD	B,+EE

0CA0		OUT	(+F7),A	Make RXdata having a high level.

0CA2		OUT	(C),B	Turn off RS232.

0CA4	BD-DEL-3	DEC	HL	Insert a final delay before returning

0CA5		LD	A,L	via the border-restore routine

0CA6		OR	H	below.

0CA7		JR	NZ,0CA4,BD-DEL-3

THE 'BORDER COLOUR RESTORE' SUBROUTINE

This subroutine is used whenever the border colour has been changed to IOBORD during an I/O operation, and needs to be restored to its original state.

0CA9 BORD-REST	LD	A,(BORDCR)	Fetch lower screen attribute.

0CAC		AND	+38	Only bits 3,4,5, i.e. BORDER.

0CAE		RRCA		Rotate colour into bits 0,l,2.

0CAF		RRCA

0CB0		RRCA

0CB1		OUT	(+FE),A	Restore colour.

0CB3		RET		Finished.

THE 'BREAK INTO I/O OPERATION' ROUTINE

Whenever BREAK is pressed during an I/O operation, the interrupts have to be enabled, the border colour to be restored and the error "BREAK into program" to be given.

0CB4	BRK-INOUT	EI		Enable interrupts.

0CB5		CALL	0CA9,BORD-REST	Restore border colour.

0CB8		LD	(ERR-NR),+l4	Store error code and give the error.

0CBC		RST	28,ROMERR

THE 'CALL-INP' ROUTINE

All inputs from "B", "T", "N" and "M" channels are handled by loading HL with the address of the service 'input' routine for the channel, and then jumping to this routine. The routine handles both INPUT and INKEY$ commands referred to the

'new' channels.

0CBD	CALL-INP	RES	3,(TVFLAG)	'The mode is to be considered as being

				unchanged'

0CC1		PUSH	HL	Save address of the service routine.

0CC2		LD	HL,(ERR-SP)	Points to the error address.

0CC5		LD	E,(HL)	Fetch low byte of error addres

0CC6		INC	HL

0CC7		LD	D,(HL)	Fetch high byte.

0CC8		AND	A	Prepare for a true subtraction.

0CC9		LD	HL,+107F	This is ED-ERROR.

0CCC		SBC	HL,DE	Jump forward if not during an INPUT

0CCE		JR	NZ,0CFB,INKEY$	command.

Now deal with 'INPUT #' command referred to an Interface channel.

0CD0		POP	HL	Restore address of service routine.

0CD1		LD	SP,(ERR-SP)	Clear machine stack.

0CD5		POP	DE	Remove ED-ERROR.

0CD6		POP	DE	The old value of ERR-SP

0CD7		LD	(ERR-SP),DE	is restored.

0CDB	IN-AGAIN	PUSH	HL	Save address of the service routine.

0CDC		LD	DE,+0CE1	Return address is INPUT-END below.

0CDF		PUSH	DE

0CE0		JP	(HL)	Jump to the service routine.

When the character has been read from the required channel, a return is made here to add the character to the INPUT line, or to return if the character is ENTER.

0CE1	INPUT-END	JR	C,0CED,ACC-CODE	Jump with acceptable codes.

0CE3		JR	Z,0CEA,NO-READ	Jump with no data read.

0CE5	OREPORT-8	LD	(ERR-NR),+07	Otherwise report the 'End of file'

0CE9		RST	28,ROMERR	error.

0CEA	NO-READ	POP	HL	Restore address of service routine

0CEB		JR	0CDB,IN-AGAIN	and try again.

0CED	ACC-CODE	CP	+0D	Jump if the code is ENTER.

0CEF		JR	Z,0CF7,END-INPUT

0CF1		RST	10,CALBAS	Otherwise the character is to be added

0CF2		DEFW	+0F85	to the INPUT line - so enter into the

				main ROM 'ADD-CHAR' subroutine.

0CF4		POP	HL	Restore address of service routine

0CF5		JR	0CDB,IN-AGAIN	and read the next byte.

0CF7	END-INPUT	POP	HL	Remove address of service routine.

0CF8		JP	0700,UNPAGE	Return to the main ROM calling

				routine.

Enter here to deal with the INKEY$ function (a single character is returned).

0CFB	INKEY$	POP	HL	Address of service routine.

0CFC		LD	DE,+0D01	Return address is INK$-END below.

0CFF		PUSH	DE

0D00		JP	(HL)	Jump to the service routine.

After having read the byte, a return is made here.

0D01	INK$-END	RET	C	Return with acceptable codes, or

0D02		RET	Z	no character read.

0D03		BIT	4,(FLAGS3)	Give the 'end of file' error if bit

0D07		JR	Z,0CE5,OREPORT-8	4 of FLAGS3 is reset.

0D09		OR	+01	Otherwise the MOVE command has been

0D0B		RET		used - so return with carry and zero

				flags both reset.

The Network routines

THE '"N" CHANNEL INPUT' ROUTINE

The actual 'input' is handled via the CALL-INP routine above. The service routine is NCHAN-IN.

0D0C	N-INPUT	LD	HL,+0D12	Address of NCHAN-IN routine.

0D0F		JP	0CBD,CALL-INP	Jump to the control routine.

THE '"N" CHANNEL INPUT' SERVICE ROUTINE

The actual "n" input involves the reading of the byte from the network buffer. If no other bytes are found in the buffer, a further data block is to be received (provided that the 'current' block is not the 'EOF' one) before reading the byte.

0D12	NCHAN-IN	LD	IX,(CURCHL)	Fetch start of "n" channel.

0D16		LD	A,(NCOBL)	This holds 0 while 'receiving'.

0D19		AND	A	Jump if it is a "read" file.

0D1A		JR	Z,0D1E,TEST-BUFF

'Reading a 'write' file'

0D1C		RST	20,SH-ERR		Call the error handling

0D1D		DEFB	+0D		routine.

0D1E	TEST-BUFF	LD	A,(NCIBL)	Fetch number of bytes to be read

				from the buffer.

0D21		AND	A	If NCIBL holds zero, then the buffer

0D22		JR	Z,0D38,TST-N-EOF	is empty.

0D24		LD	E,(NCCUR)		Otherwise fetch the current position.

0D27		DEC	A		Decrease number of bytes to be read

				from the buffer.

0D28		SUB	E		Subtract position from the result.

0D29		JR	C,0D38,TST-N-EOF	Jump if all bytes have been read.

0D2B		LD	D,+00		Clear D register.

0D2D		INC	E		Update the character position.

0D2E		LD	(NCCUR),E

0D31		ADD	IX,DE		Points to 'byte to be read - 20'.

0D33		LD	A,(IX+20)		Read the byte.

0D36		SCF		Carry is set to signal 'acceptable

				byte'.

0D37		RET		Finished.

If no data is found in the buffer, consider whether this data block is the last one.

0D38	TST-N-EOF	LD	A,(NCTYPE)	Fetch packet type.

0D3B		AND	A	Jump if packet type = 0.

0D3C		JR	Z,0D3F,GET-N-BUF	Indicating a normal packet.

0D3E		RET		Otherwise return with both zero and

				carry flags reset to signal 'end of

				file'.

A further data block is to be received if the current data block is not the 'EOF' one.

0D3F	GET-N-BUF	LD	A,(IOBORD)	Fetch new border colour.

0D42		OUT	(+FE),A	Change border colour.

0D44		DI		Disable interrupts.

0D45	TRY-AGAIN	CALL	0F1E,WT-SCOUT	Wait for a 'scout' leader.

0D48		JR	NC,0D5F,TIME-OUT	Jump if 'time out' occurs.

0D4A		CALL	0E18,GET-NBLK	Wait for header and data block.

0D4D		JR	NZ,0D5F,TIME-OUT	Jump with any error.

0D4F		EI		Enable interrupts.

0D51		CALL	0CA9,BORD-REST	Restore border colour.

0D53		LD	(NCCUR),+00	The position is 0.

0D57		LD	A,(NTTYPE)	Copy this byte

0D5A		LD	(NCTYPE),A	to signal the packet type.

0D5D		JR	0D1E,TEST-BUFF	Try now to fetch the byte.

0D5F TIME-OUT	LD	A,(NCIRIS)	Fetch destination station no.

0D62		AND	A	There is no 'time-out' when

0D63		JR	Z,0D45,TRY-AGAIN	broadcasting (NCIRIS=0).

0D65		DI		Enable interrupts.

0D66		CALL	0CA9,BORD-REST	Restore border colour.

0D69		AND	+00	Return with zero flag set and carry

0D6B		RET		reset, signalling that no data has

				been read.

THE '"N" CHANNEL OUTPUT' ROUTINE

The routine that handles the "n" channel output is quite straightforward. It involves the storing of the byte held in the A register into the 255-byte buffer; whenever this is filled, the subroutine S-PACK-1 is called, so the data block is sent over the network.

0D6C NCHAN-OUT	LD	IX,(CURCHL)	Point to start of channel.

0D70		LD	B,A	Save temporarily into B the byte to

				be sent.

0D71		LD	A,(NCIBL)	This holds 0 for 'write' channel.

0D74		AND	A	Set zero flag as required.

0D75		LD	A,B	Restore the byte to be sent.

0D76		JR	Z,0D7A,TEST-OUT	Continue only if using a 'write'

				channel (NCIBL=0).

'Writing to a 'read' file'

0D78		RST	20,SH-ERR	Call the error handling

0D79		DEFB	+0C	routine.

0D7A	TEST-OUT	LD	E,(NCOBL)	Fetch length of output buffer.

0D7D		INC	E	Include the current byte in the

				length count.

0D7E		JR	NZ,0D88,ST-BF-LEN	Jump unless the buffer is filled.

0D80		PUSH	AF	Save the byte to be sent.

0DB1		XOR	A	Signal normal packet type.

0D82		CALL	0DAB,S-PACK-1	Send the packet.

0D85		POP	AF	Restore the byte to be sent.

0D86		LD	E,+01	'Only 1 byte in the buffer'.

0D88	ST-BF-LEN	LD	(NCOBL),E	Store new buffer length.

0D8B		LD	D,+00	Make IX point to 'first free byte in

0D8D		ADD	IX,DE	the buffer - 20).

0D8F		LD	(IX+20),A	Store byte in the buffer.

0D92		RET		Finished.

THE 'OUT-BLK-N' SUBROUTINE

This subroutine calls the OUTPAK subroutine to send over the network the block of bytes starting from (HL), and whose length is held into the E register. Then a 'response byte' is to be received into the NTRESP system variable (provided that you are not using the broadcast). The zero flag is returned reset if no

response byte has been received. This subroutine is called from SEND-PACK below to send the header and then the data block over the network.

0D93	OUT-BLK-N	CALL	0FC5,OUTPAK	Send the block.

0D96		LD	A,(NCIRIS)	This holds zero when broadcasting.

0D99		AND	A

0D9A		RET	Z	Return if broadcasting.

0D93		LD	HL,+5CCD	Address of NTRESP system variable.

0D9E		LD	(HL),+00	First clear NTRESP.

0DA0		LD	E,+01	A single byte is to be received

				into NTRESF.

0DA2		CALL	0F92,INPAK	Get response byte (+01).

0DA5		RET	NZ	Return with zero flag reset if the

				network was inactive.

0DA6		LD	A,(NTRESP)	Now fetch the response byte.

0DA9		DEC	A	It must be +01.

0DAA		RET		Return with zero flag reset if it

				is not +01.

THE 'S-PACK-1' SUBROUTINE

This subroutine simply calls SEND-PACK below. If broadcasting, a certain delay is to be inserted after having sent the packet.

0DAB	S-PACK-1	CALL	0DB2,SEND-PACK		Send the packet.

0DAE		RET	NZ	Return if not broadcasting.

0DAF		JP	0E0F,BR-DELAY	Otherwise exit through the delay

				routine.

THE 'SEND-PACK' SUBROUTINE

This subroutine is also	called by using 'hook code' +30. It sends over the network a SCOUT leader,	followed by the header and the data block for the "n" channel pointed by the IX register. On entry, the A register may hold +01 or +00 depending upon whether the block is the 'end of file' one or not. NCNUMB is incremented before returning. The zero flag is returned set if the destination station number denotes that the 'broadcasting' is being used.

0DB2 SEND-PACK	LD	(NCTYPE),A	Store packet type, i.e. +00 for

				normal, +01 for end of file.

0DB5		LD	B,(NCOBL)	Fetch block length.

0DB8		LD	A,(IOBORD)	Fetch new border colour.

0DBB		OUT	(+FE),A

0DBD		PUSH	IX	Make DE point to the start of the

0DBF		POP	DE	"n" channel.

0DC0		LD	HL,+0015	Add this offset to point to

0DC3		ADD	HL,DE	the start of the 255-byte buffer.

Now the checksum of the data block is calculated.

0DC4		XOR	A	First clear A register.

0DC5	CHKS1	ADD	A,(HL)	Add this byte.

0DC6		INC	HL	Point to next location.

0DC7		DJNZ	0DC5,CHKS1	Repeat for all bytes in the block.

0DC9		LD	(NCDCS),A	Store the checksum obtained.

0DCC		LD	HL,+000B	Now points to NCIRIS.

0DCF		ADD	HL,DE

0DD0		PUSH	HL	Save the pointer.

The checksum of the header is calculated.

0DD1		LD	B,+07	Checksum is for 7 bytes.

0DD3		XOR	A	Clear A register.

0DD4	CHKS2	ADD	A,(HL)	Add this byte.

0DD5		INC	HL	Point to next location.

0DD6		DJNZ	0DD4,CHKS2	Repeat for all bytes.

0DD8		LD	(HL),A	Store checksum into NCHCS.

Now the SCOUT leader, followed by the 8-byte header, is sent, and a response code is received (if not broadcasting).

0DD9		DI		Disable interrupts.

0DDk	SENDSCOUT	CALL 9Fb1,SEND-SC		Send the SCOUT (i.e. a leader

				followed by station number).

0DD0		POP	HL	Restore pointer to NCIEIS,

0DD1		PUSH	HL	i.e. Start of header block.

0DD1		LD	1,48	The header Is made by '8' bytes.

0DE1		CALL	9II93,OUT-BLK-N	The header is sent, and the response

				code received.

0DE4		JR	NZ,0DDA,SENDSCOUT	Repeat until successfully.

0DE6		PUSH	IX	Make HL point to the start of the "n"

0DE8		POP	HL	channel.

0DE9		LD	DE,+0015	Now points to the start of the data

0DEC		ADD	HL,DE	block.

0DED		LD	E,(NCOBL)	Get block length.

0DF0		LD	A,E	If NCOBL is zero (i.e. if the buffer

0DF1		AND	A	is empty); no data needs to be sent.

0DF2		JR	Z,0DFD,INC-BLKN

0DF4		LD	B,+20	Wait 418 T cycles before proceeding.

0DF6	SP-DL-1	DJNZ	0DF6,SP-DL-1

Now the data block is sent, and NCNUMB updated.

0DF8		CALL	0D93,OUT-BLK-N		Send the data block and get the

					response code.

0DF8		JR	NZ,0DDA,SENDSCOUT	Repeat until succesfully.

0DF0	INC_BLKN	INC	(NCNUMB-lo)	Increment low byte of block number.

0E00		JR	NZ,0E05,SP-N-END

0E02		INC	(NCNUMB-hi)	Increment also high byte when low

					byte reaches zero.

0E05	SP-N-END	POP	HL	Restore pointer to NCIRIS.

0E06		CALL	0CA9,BORD-REST	Restore border colour.

0E09		EI		Enable interrupts.

0E0k		LD	A,(NCIRIS)	Get destination station number.

0E00		AND	A	Set zero flag if NCIRIS is 0 (i.e.

					broadcasting).

0E01		RET		Finished.

THE 'BR-DELAY' SUBROUTINE

This short subroutine inserts a delay of about 40 msec. when it is called. Its task is that of separating outputs during 'broadcasts' transmissions.

0E01	BR-DELAY	LD	DE,+1500	Set a counter.

0E12	DL-LOOP	DEC	DE	Decrease it.

0E13		LD	A,E	Check whether the counter has reached

0E14		OR	D	zero.

0E15		JR	NZ,0E12,DL-LOOP	Repeat if not.

0E17		RET		Finished.

THE 'HEADER AND DATA BLOCK RECEIVING' ROUTINES

The following two subroutines are used to get from the Network an 8-byte header and a data block respectively. Both require that the IX register point to the start of the "n" channel. The zero flag is returned reset with any error.

0E18	GET-NBLK	LD	HL,+5CCE	Point to NTDEST, i.e. first byte of

					header block.

0E1B		LD	E,+08	Length of the block.

0E1D		CALL	0F92,INPAK		Receive the header.

0E20		RET	NZ	Return with network inactive (i.e.

					no header has been found).

0E21		LD	HL,+5CCE	Points again to NTDEST.

Now the header checksum is calculated, and compared with NTCHS checksum.

0E24		XOR	A	First clear A.

0E25		LD	B,+07	Checksum for next 7 bytes.

0E27	CHKS3	ADD	A,(HL)	Add this byte.

0E28		INC	HL	Point to next location.

0E29		DJNZ	0E27,CHKS3	Repeat for all bytes.

0E2B		CP	(HL)	Compare with NTCHS checksum.

0E2C		RET	NZ	Return if they do not match.

Some other tests are now made.

0E2D		LD	A,(NTDEST)	Fetch destination station number.

0E30		AND	A	Jump if broadcasting.

0E31		JR	Z,0E40,BRCAST

0E33		CP	(NCSELF)	Otherwise compare with NCSELF.

0E36		RET	NZ	Return if this data block is for

					another Spectrum.

0E37		LD	A,(NTSRCE)	Source station number.

0E3A		CP	(NCIRIS)	Compare against NCIRIS.

0E3D		RET	NZ	Return if the transmitting Spectrum

					is not the required one.

0E3E		JR	0E45,TEST-BLKN	Jump forward.

0E40	BRCAST	LD	A,(NCIRIS)	Make sure that it is broadcasting

0E43		OR	A	(i.e. NTDEST and NCIRIS both 0).

0E44		RET	NZ	Return if you are not waiting for a

					broadcast.

0E45	TEST-BLKN	LD	HL,(NTNUMB)	Fetch number of block being

					transmitted.

0E48		LD	E,(MCNUMB-lo)	Fetch number of expected block.

0E4B		LD	D,(NCNUMB-hi)

0E4E		AND	A

0E4F		SBC	HL,DE	Jump if the block received is the

0E51		JR	Z,0E65,GET-NBUFF	expected one.

0E53		DEC	HL	Accept also the previous block

0E54		LD	A,H	(already received, but 'response'

0E55		OR	C	lost).

0E56		RET	NZ	But refuse other blocks.

0E57		CALL	0E65,GET-NBUFF		Receive the block.

0E5A		DEC	(NCNUMB-lo)	Decrease NCNUMB, i.e. 'ignore' this

0E5D		JR	NC,0E62,GETNB-END	block.

0E5F		DEC	(NCNUMB-hi)

0E62	GETNB-END	OR	+01	Return with zero flag reset, so that

0E64		RET		the procedure is repeated.

Now follows the second routine, used to get the data block from the network.

0E65 GET-NBUFF	LD	A,(NTDEST)	This holds zero when broadcasting.

0E68		AND	A

0E69		CALL	NZ,0FBE,SEND-RESP	Send the 'response' code (for the

					header) unless broadcasting.

0E6C		LD	A,(NTLEN)	Fetch data block length.

0EbF		AND	A	Jump if the data block is empty.

0E73		JR	Z,0E93,STORE-LEN

0E72		PUSH	IX	Make HL point to the start of the

0E74		POP	HL	channel.

0E75		LD	DE,+0015	Point to the start of data buffer.

0E78		ADD	HL,DE

0E79		PUSH	HL	Save start address.

0E?A		LD	E,A	Length of the block to be received

					goes into E.

0E7B		CALL	0F92,INPAK	Receive the data block.

0E7E		POP	HL	Restore start address.

0E7F		RET	NZ	Return if the network was inactive.

0E83		LD	A,(NTLEN)	Pass length of data block to the

0E83		LD	B,A	B register.

0E84		LD	A,(NTDCS)	Start with the data block checksum.

0E87	CHKS4	SUB	(HL)	Subtract current byte.

0E88		INC	HL	Point to next location.

0E89		DJNZ	0E87,CHKS4	Repeat for all bytes in the block.

0E8B		RET	NZ	Return if the checksum is wrong.

0E8C		LD	A,(NTDEST)	This holds 0 when broadcasting.

0E8F		AND	A

0E93		CALL	NZ,0FBE,SEND-SCOUT	Send response code for the data block

					(unless broadcasting).

0E93	STORE-LEN	LD	A,(NTLEN)	Fetch data block length.

0E96		LD	(NCIBL),A	Copy it into NCIBL.

0E99		INC	(NCNUMB-lo)	Finally increment block number.

0E9C		JR	NZ,0EA1,GETBF-END

0E9E		INC	(NCNUMB-hi)

0EA1	GETBF-END	CP	A	Return with zero flag set to signal

0EA2		RET		'block successfully received'.

THE 'OPEN "N" CHANNEL' COMMAND ROUTINE

This routine is the actual OPEN command referred to the network. It is called from the 'OPEN' command syntax routine to attach a permanent "n" channel to a stream.

0EA3	OPEN-N-ST	CALL	0EB5.OP-PERM-N	Open a permanent "n" channel.

0EA6		JP	0B4A,OP-STREAM	Attach it to a stream.

THE 'OPEN TEMPORARY "N" CHANNEL' SUBROUTINE

This subroutine is also called by using the 'hook code' +2D. It simply opens a permanent 'n' channel, and then makes it "temporary" by setting bit 7 of the channel specifier. The variables are to be set as for the OP-PERM-N subroutine below. The start of the channel area is returned in the IX index register.

0EA9 OP-TEMP-N	CALL	0EB5,OP-PERM-N	Open a permanent "n" channel.

0EAC		LD	IX,(CURCHL)	Fetch start of channel area.

0EB1		SET	7,(IX+4)	Make the channel temporary.

0EB4		RET		Finished.

THE 'OPEN PERMANENT "N" CHANNEL" SUBROUTINE

On entry, D-STR1 must hold the destination station number to be copied into NCIRIS, while NTSTAT must hold the own station number to be copied into NCSELF. A permanent "n" channel is created into the CHANS area, and it is made, the 'current' channel. The routine returns the channel base address into the DE register pair.

0EB5	OP-PERN-N	LD	HL,(PROG)	Fetch start address of the channel

0EB8		DEC	HL 	created.

0EB9		LD	BC,+0114	Length of the channel.

0EBC		PUSH	BC		Save it briefly.

0EBD		RST	10,CALBAS	Call main ROM 'MAKE-ROOM' subroutine

0EBE		DEFW	+1655		to make the required space.

0EC3		INC	HL	Point to the first new location.

0EC1		POP	BC	Restore 'length' of space inserted.

0EC2		CALL I691,RESThN.,.AD		Restore start address of 'filename'

				possibly moved up after the

				insert ion.

0EC5		LD	(CHURCHL),HL	Make the Channel 'current'

0EC8		EX	DE,HL	Pass 'start' to DE.

0EC9		LD	HL,+0EEA	Start of "n" Channel data.

0ECC		LD	BC,+000B	Length of data.

0ECF		LDIR		Copy the data into the channel area.

0ED1		LD	A,(DSTR-1)	Fetch destination station number.

0ED4		LD	(DE),A	Copy it into NCIRIS.

0ED5		INC	DE	Points to NCSELF.

0ED6		LD	A,(NTSTAT)	Fetch own station number.

0ED9		LD	(DE),A	Copy it into NCSELF.

0EDA		INC	DE	Points to NCNUMB.

0EDB		XOR	A 	Clear it.

0EDC		LD	(DE),A

0EDD		LD	H,D	Fill the remaining bytes with zeros.

0EDE		LD	L,E

0EDF		INC	DE

0EE0		LD	BC,+0106

0EE3		LDIR

0EE5		LD	DE,(CURCHL)	Fetch start address of the channel.

0EE9		RET		Finished.

THE '"N" CHANNEL DATA' TABLE

The '11' bytes that composes the initial part of a "N" channel are as follows:

0EEA		DEFW	+0008	Main ROM 'output' routine.

0EEC		DEFW	+0008	Main ROM 'input' routine.

0EEE		DEFB	+43	"N" (channel specifier)

0EEF		DEFW	+0D6C	Shadow ROM 'output' routine.

0EF1		DEFW	+0D0C	Shadow ROM 'input' routine.

0EF3		DEFW	+0114	Length of "n" channel.

THE 'SEND EOF BLOCK TO NETWORK' SUBROUTINE

This subroutine is used whenever the remaining buffer contents of the current "n" channel have to be sent as the "end of file" block.

0EF5	SEND-NEOF	LD	IX,(CURCHL)	Fetch start address of channel.

0EF9		LD	A,(NCOBL)	Fetch data block length.

0EFC		AND	A	Return if this is a 'read' channel

0EFD		RET	Z	(NCOBL=0).

0EFE		LD	A,+01	Signal 'EOF' packet.

0F00		JP	0DAB,S-PACK-1	Send packet and exit.

THE 'NETWORK STATE' SUBROUTINE

This subroutine returns when the network is considered to be 'resting', i.e. when the network line is inactive for 3-4 ms. The exact time is 'randomised' as to prevent Spectrums from claiming the network at the same time.

0F03	NET-STATE	LD	A,R	Get a random value.

0F05		CP	+C0	Allow only the range 192..255.

0F07		LD	B,A	Pass the value to B.

0F08		CALL	0F8E,CHK-REST	Check network state.

0F0B		JR	C,0F03,NET-STATE	Repeat until the network is resting,

				or BREAK pressed.

0F0D		RET		Return when 'ready to claim'.

THE 'CHECK-RESTING' SUBROUTINE

This subroutine checks the state of the network and returns with carry reset if it is inactive for a 'sufficient' time determined by the value passed to the B register ((B * 54) - 22) T cycles).

0F0E	CHK-REST	LD	A,+7F	First check SPACE key.

0F10		IN	A,(+FE)

0F12		RRCA

0F13		JR NC,0F4D,E-READ-N	Give an error if it is pressed.

0F15	MAKESURE	PUSH	BC	Wait 21 T cycles.

0F16		POP	BC

0Fl7		IN	A,(+F7)	Check network state.

0F19		RRCA		Only bit 0.

0F1A		RET	C	Return if the network is already

				claimed by another Spectrum.

0F1B		DJNZ 0F15,MAKESURE	Repeat the test.

0F1D		RET		Return with carry reset when network

				is resting.

THE 'WAIT-SCOUT' SUBROUTINE

This subroutine is used to identify a SCOUT leader from the network. This is done by checking the network line for about 7000 T cycles, to prove whether it is resting. After this, the network is examined until it is active. At this point, the SCOUT is identified. The subroutine returns the carry flag reset if 'time-out' has occurred and no SCOUT has been identified. Remember that there are no 'time-outs' when broadcasting.

0F1E	WT-SCOUT	LD	HL,+01C2	Set a counter.

0F21	CLAIMED	LD	B,+80	This constant allows the network to

					be tested for 6890 T cycles.

0F23		CALL	0F9E,CHK-REST	Check network state.

0F26		JR	NC,0F35,WT-SYNC	Jump for waiting the SCOUT.

0F28		DEC	HL	Loop again if the network is active,

0F29		DEC	HL	until the counter reaches zero.

0F2A		LD	A,H

0F2B		OR	C

0F2C		JR	NZ,0F21,CLAIMED

0F2E		LD	A,(NCIRIS)	There is no 'time-out' when

0F31		AND	A	broadcasting.

0F32		JR	Z,0F21,CLAIMED

0F34		RET		Return with carry reset to signal

				'time-out'.

Now the SCOUT pulse is waited for.

0F35	WT-SYNC	IN A,(+F7) 	Read the network line.

0F37		RRCA		Only bit 0.

0F38		JR	C,0F56,SCOUT-END	Jump if the SCOUT is identified.

0F3A		CD	A,+7F	Check SPACE key.

0F3C		IN	A,(+FE)

0F3E		RRCA

0F3F		JR	NC,0F4O,E-READ-N	Give an error if it is pressed.

0F41		DEC	HL	decrease counter.

0F42		LD	A,H	Repeat until it reaches zero.

0F43		OR	C

0F44		JR	NZ,0F35,WT-SYNC

0F46		CD	A,(NCIRIS)	There is no 'time-out' when

0F49		AND	A	broadcasting.

0F4A		JR	Z,0F35,WT-SYNC

0F4C		RET		Carry reset signals 'time-out',

0F4D	E-READ-N	EI		Enable interrupts.

0F4E		CALL 0CA9,BORD-REST	Restore border colour.

0F51		LD	(ERR-NR),+14	Give the error 'BREAK into program'.

0F55		RST	28,ROMERR

NOTE:	The above routine is a 'duplicate' of BRK-INOUT at 0CB4.

When the SCOUT has been identifIed, the routine waits until it is finished.

0F56	SCOUT-END	LD	L,+09	Set a counter.

0F58	LP-SCOUT	DEC	L	Decrease it.

0F59		SCF		Return with carry set (to signal

0F5A		RET	Z	'scout identified') when the counter

				reaches zero.

0F5B		LD	B,+0E	Wait a while.

0F5D	DELAY-SC	DJNZ	0F5D,DELAY-SC

0F5F		JR	0F58,LP-SCOUT	Go back into the loop,

THE 'SEND-SCOUT' SUBROUTINE

This is the opposite of the preceding routine; the SCOUT leader, followed by an 8-bit station number, is sent over the network. After having sent every bit, a test is made to see if the network has the expected state from the current bit value; if any error is found, then the whole procedure is repeated.

0F61	SEND-SC	CALL	0F03,NET-STATE		Wait until the network Is resting.

0F64		LD	C,+F7	Output port.

0F66		LD	HL,+0009	H=0 (leader bit value)

				L=9 (bit counter).

0F69		LD	A,(NTSTAT)	Fetch global station number,

0F6C		LD	E,A	Pass it to the E register.

0F6D		IN	A,(+F7)	Start again if some data is found

0F6F		RRCA		into the network line.

0F70		JR	C,0F61,SEND-SC

0F72	ALL-BITS	OUT	(C),H	Send a bit.

0F74		LD	D,H	Save the bit into D.

0F75		LD	H,+00	Clear H.

0F77		RLC	E	Rotate 'station no.' left.

0F79		RL	H	Bit 7 of station no. goes into bit

				0 of H.

0F7B		LD	B,+08	Wait 196 T cycles.

0F7D	S-SC-DEL	DJNZ	0F7D,S-SC-DEL

0F7F		IN	A,(+F7)	Read the network.

0F81		AND	+01	Only bit 0.

0F83		CP	D	Repeat again the procedure if the

0F84		JR	Z,0F61,SEND-SC	network does not have the right state

				from the current bit value.

0F86		DEC	L	Decrease bit counter.

0F87		JR	NZ,0F72,ALL-BITS	Send all bits.

0F89		LD	A,+01	Make network inactive.

0F8B		OUT	(+F7),A

0F8D		LD	B,+0E	Wait 184 T cycles.

0F8F	END-S-DEL	DJNZ	0F8F,END-S-DEL

0F91		RET		Finished.

THE 'INPAK' SUBROUTINE

This basic subroutine is used to receive from the network a block of bytes. On entry. HL must hold the address from which the bytes will be loaded, while E must hold the length of the block. The subroutine returns with the zero flag reset if the network is found inactive and no data has been read. The bits are read every 40 T cycles.

0F92	INPAK	LD	B,+FF	Set a counter.

0F94	N-ACTIVE	IN	A,(+F7)	Read the network.

0F96		RRA		Only bit 3.

0F97		JR	C,0F9D,INPAK-2	Jump if found active.

0F99		BJNZ	0F94,N-ACTIVE	Otherwise try again.

0F9B		INC	B	Return with zero flag reset to

0F9C		RET		indicate 'network inactive'.

Now the block is received.

0F9D	INPAK-2	LD	B,E	B holds the length of the block.

0F9E	INPAK-L	LD	E,+80	Set a marker into bit 7.

0FAI		LD	A,+CE	Make Wait and CTS having a low level,

0FA2		OUT	(+EF),A	enable network comm.

0FA4		NOP		Wait 48 T cycles at the start of each

0FA5		NOP		byte.

0FA6		INC	IX	

0FA8		DEC	IX

0FAA		INC	IX

0FAC		DEC	IX

0FAE	UNTIL-MK	LD	A,+00	Wait 7 T cycles.

0FB0		IN	A,(+F7)	Get a bit into carry

0FB2		RRA		flag.

0FB3		RR	E	Shift the bit into E.

0FB5		JP	NC,0FAE,UNTIL-MK	Repeat for 8 bits.

0FB8		LD	(HL),E	Store the received byte.

0FB9		INC	HL	Point to next location.

0FBA		DJNZ	0F9E,INPAK-L	Get next byte.

0FBC		CP	A	Return with zero flag set to signal

0FBD		RET		'successfully read'.

THE 'SEND RESPONSE BYTE' SUBROUTINE

A 'response byte' is simply a byte +01 that is sent over the network to confirm that some data has been successfully received.

0FBE	SEND-RESP	LD	A,+0l	This is the response byte.

0FC0		LD	HL,+5CCD	Store it into NTRESP.

0FC3		LD	(HL),A

0FC4		LD	E,A	A 'single byte' is to be sent.

The subroutine continues into OUTPAK below.

THE 'OUTPAK' SUBROUTINE

This is the opposite to the INPAK subroutine and thus, is used to send over the network a block of bytes. Again, on entry HL must hold the address fro which the block is stored, and E must hold its length. Initially a leader (length 98 T cycles) is sent, followed by each byte, with an initial 'start' period, and then the 8 bits (each 40 T cycles).

0FC5	OUTPAK	XOR	A	Begin with a 'start' leader.

0FC6		OUT	(+F7),A

0FC8		LD	B,+04	Insert the required delay.

0FCA	DEL_O-1	DJNZ	0FCA,DEL_O-1

0FCC	OUTPAK-L	LD	A,(HL)	Get the byte to be sent,

0FCD		CPL		Send the bits inverted.

0FCE		SCF		The start bit is high.

0FCF		RLA		Rotate bit into A.

0FD0		LD	B,+0A	'10' bits to be sent (start, data,

				stop).

0FD2	UNT-MARK	OUT	(+F7),A	Send the bit.

0FD4		RRA		Next bit.

0FD5		AND	A	But clear carry.

0FD6		DEC	B	becrease bit counter.

0FD7		LD	D,+00	Wait 7 T cycles.

0FD9		JP	NZ,0FB2,UNT-MARK	Loop for all bits.

0FDC		INC	HL	Point to next location in the block.

0FDD		DEC	E	Decrease 'block length'.

0FDE		PUSH	HL	Wait 22 T cycles.

0FDF		POP	HL

0FE0		JP	NZ,0FCC,OUTPAK-L	Loop until all bytes have been sent.

0FE3		LD	A,+01

0FE5		OUT	(+F7),A	Finally make the network inactive.

0FE7		RET		Finished.

The Microdrive routines

THE 'SET A TEMPORARY "M" CHANNEL' SUBROUTINE

This very important subroutine sets a temporary "M" channel in the CHANS area; the Microdrive map is created unless it already exists (if another channel refers to the same drive). The subroutine returns with the IX register pointing to the start of the channel, and with the HL register holding a suitable displacement to be eventually inserted in the STRHS area to attach the channel to a stream. Note that the HL' register is corrupted if you call this routine from your own program.

0FE8	SET-T-MCH	EXX			Swap registers.

0FE9		LD	HL,+0000	Signal 'map to be created'.

0FEC		EXX		Swap registers again.

0FED		LD	IX,(CHANS)	Start of channel area.

0FF1		LD	DE,+0014	Points to the start of the channels

0FF4		ADD	IX,DE	Other than the 'standard' ones.

0FF6	CHK-LOOP	LD	A,(IX+0)	Jump forward it the CHANS area is

0FF9		CP	+80	finished.

0FFB		JR	Z,1034,CHAN-SPC

0FFD		LD	A,(IX+4)	Fetch channel specifier.

1000		AND	+7F	Clear bit 7.

1002		CP	+4D	Jump if this is not an "m" channel.

1004		JR	NZ,102A,NEXT-CHAN

1006		LD	A,(D-STR1)	Fetch drive number.

1009		CP	(CHDRIV)	Jump if this channel uses a different

l00C		JR	NZ,102A,NEXT-CHAN	drive.

100E		EXX		Swap registers.

100F		LD	L,(CHMAP-lo)	Move address of map area into H'L'

1012		LD	H,(CHMAP-hi)

1015		LXX		Swap registers again.

1016		LD	BC,(N-STR1)	Length of filename.

101A		LD	HL.(N-STR1+2)	Start address of filename.

101D		CALL	131E,CHK-NAME	Check name against 'CHNAME' of this

				channel.

1020		JR	NZ,102A,NEXT-CHAN	Jump if not the same file.

1022		BIT	3,(IX+24)	This is set with 'write' files.

1026		JR	Z,102A,NEXT-CHAN	Continue with 'read' files.

1028		RST	20,SH-ERR	Give the 'Reading a 'write' file'

1029		DEFB	+0D	error if the file is already opened

				for writing.

102A	NEXT-CHAN	LD 	E,(IX+9)	Fetch length of channel into the DE

102D		LD 	D,(lX+10) 	register pair.

1030		ADD	IX,DE	Point to the next channel.

1032		JR	0FF6,CHK-LOOP	Back again.

Now the space for the new channel is created at the end of the CHANS area.

1034	CHAN-SPC	LD	HL,(PROG)	Fetch the start address of the

1037		DEC	HL	channel,

1038		PUSH	HL	Save it.

1039		LD	BC,+0253	Length is '595' bytes.

103C		RST	10,CALBAS	Call MAKE-ROOM to create the required

103D		DEFW	+1655	space.

103E		POP	DE	Restore start address of the channel.

1040		PUSH	DE

1041		LD	HL,+13CC	Start of "M" channel data.

1044		LD	BC,+0019	Length of data.

1047		LDIR		Store data into the channel.

1049		LD	A,(D-STR1)	Fetch drive number.

104C		LD	(CHDRIV),A	Initialise CHDRIV.

104F		LD	BC,+0253	Length of channel.

1052		PUSH	IX	Fetch start of channel into HL.

1054		POP	HL

1055		CALL 1691,REST-N-AD	Restore start of 'filename' possibly

				moved after the 'insertion' of the

				channel.

1058		EX	DE,HL	The start address of the filename goes

				to HL.

1059		LD	BC,(N-STR1)	Fetch length of filename.

105D		BIT	7,B	Jump if the name does not exist

105F		JR	NZ,106F,TEST-MAP	(N-STR1 = +FFFF).

The channel name is transferred into CHNAME.

1061	T-CH-NAME	LD	A,B	The loop continues until 'length'

1062		OR	C	reaches zero.

1063		JR	Z,106F,TEST-MAP	Fetch character of name.

1065		LD	A,(HL)

1066		LD	(IX+14),A	Store it into CHNAME.

1069		INC	HL	Point to next locations.

l06A		INC	IX

106C		DEC	BC	Decrease 'length'.

106D		JR	106l,T-CH-NAME	Continue with next character.

Now the 'map' is created unless it already exists.

106F	TEST-MAP	POP	IX	Restore start address of channel.

1071		EXX		Use alternate registers.

1072		LD	A,H	Address of map, or +0000 if the map

1073		OR	L	does not exist.

1074		JR	NZ,108A,ST-MAP-AD	Jump if the map already exists.

1076		LD	HL,(CHANS)	Otherwise the map is to be created.

1079		PUSH	HL

107A		DEC	HL

107B		LD	BC,+0020	Length of the map is 32 bytes.

107E		RST	10,CALBAS	Call MAKE-ROOM to make the space.

107F		DEFW	+1655

1081		POP	HL	Restore start of map.

1082		LD	BC,+0020	Restore 'start' of channel.

1085		ADD	IX,BC

1087		CALL	1691,REST-N-AD	Restore 'start' of filename.

108A	ST-MAP-AD	LD	(CHMAP-lo),L	Lastly store the start address

108E		LD	(CHMAP-hi),H	of the Microdrive map.

All bits in the map are made high; then the 'preambles' are collected from the table at +13E5 and stored in the channel.

1090		LD	A,+FF	All bits high.

1092		LD	B,+20	Length of map.

l094	FILL-MAP	LD	(HL),A	Store +FF into this location.

1095		INC	HL	Advance the pointer.

1096		DJNZ	1094,FILL-MAP		Continue for 32 bytes.

1098		PUSH	IX		Pass start of channel to HL.

109A		POP	HL

109B		LD	DE,+001C	Make DE register pair point to the

109E		ADD	HL,DE	header block preamble area.

109F		EX	DE,HL

10A0		LD	HL,+13E5	Start of 'preamble' data.

l0A3		LD	BC,+000C	Preamble is 12 bytes in length.

10A6		LDIR		Set-up header preamble.

10A8		PUSH	IX	Pass again 'start' to HL.

10AA		POP	HL

10AB		LD	DE,+0037	Offset for data block preamble.

10AE		LD	BC,+000C	Preamble is again 12 bytes.

10B1		ADD	HL,DE	Make DE register pair point to the

10B2		EX	DE,HL	data block preamble.

10B3		LD	HL,+13E5	Start of 'preamble data'.

10B6		LDIR		Set-up the data block preamble.

10B8		PUSH	IX	Move 'start' of channel into HL

10BA		POP	HL	register pair.

10BB		LD	DE,(CHANS)	Calculate the required 'stream

10BF		OR	A	offset' into HL.

10C0		SBC	HL,DE

10C2		INC	HL

10C3		RET		Finished.

THE 'RECLAIM "M" CHANNEL' SUBROUTINE

This subroutine (also called by using 'hook code' +2C) is used to reclaim the "m" channel pointed by the IX index register. Any stream attached to this channel will be closed, and other 'dynamic' areas updated. The map is also reclaimed, unless it is used by another channel.

10C4	DEL-M-BUF	LD	L,(CHMAP-lo)	Fetch address of map into HL.

10C7		LD	H,(CHMAP-hi)

10CA		PUSH	HL	Save it for later.

10CB		LD	A,(CHDRIV)	Fetch drive number.

10CE		PUSH	AF	Save it for later.

10CD		PUSH	IX	Make HL point to the start of

10D1		POP	HL	the channel.

10D2		LD	BC,+0253	Length of the channel.

10D5		RST	10,CALBAS	RECLAIM-2 is called to delete

10D6		DEFW	+19E8	the channel area.

10D8		PUSH	IX	Make HL point again to the start of

10DA		POP	HL	the (reclaimed) channel.

10DB		LD	DE,(CHANS)	Calculate 'offset' used into STRMS

10DF		OR	A	area for the deleted channel,

10E0		SBC	HL,DE	possibly attached to a stream.

10E2		INC	HL

l0E3		LD	BC,+0253	Amount of bytes moved down.

10E6		CALL	l35F,REST-STRM	Close required streams and update

				data for other streams.

Look for any channel that uses the same map as that of the channel deleted.

10E9		POP	AF	Restore drive number, and start

10EA		POP	HL	address of map.

10EB		LD	B,A	Drive number goes into B.

10EC		LD	IX,(CHANS)	Start of channel area.

10F0		LD	DE,+0014	Skip initial 'standard' channels.

10F3		ADD	IX,DE

10F5	TEST-MCHL	LD	A,(IX+0)	Jump if the channel area is finished.

10F8		CP	+80

10FA		JR	Z,1114,RCLM-MAP

10FC		LD	A,(IX+4)	Fetch channel specifier.

10FF		AND	+7F	Clear bit 7 (no distinction is made

				between 'temporary' and 'permanent'

				channels).

1101		CP	+4D	Jump if this is not an "m" channel.

1103		JR	NZ,113A,NXTCHAN

1105		LD	A,(CHDRIV)	Fetch drive number of this channel.

1108		CP	B	If it is the same as that of the

1109		RET	Z	deleted channel, the map is not to

				be reclaimed.

110A	NXTCHAN	LD	E,(IX+9)	Fetch length of this channel.

110D		LD	B,(IX+10)

1110		ADD	IX,DE	Points to next channel.

1112		JR	10F5,TEST-MCHL	Back again for next channel.

If no channel uses the map used by the deleted one, it is to be deleted too.

1114	RCLM-HAP	LD	BC,+0020	Length of the map.

1117		PUSH	HL	Save start of map.

1118		PUSH	BC	Save length of map. Note: this is

				not necessary.

1119		RST	10,CALBAS	Call RECLAIM-2 to delete the map.

111A		DEFW	+19E8

111C		POP	BC	Restore length and start of the

111D		POP	HL	deleted map.

111E		CALL	1391,REST-MAP	Update addresses of other maps.

1121		RET		Finished.

THE '"M" CHANNEL INPUT' ROUTINE

The actual 'input' is handled via CALL-INP. The service routine is MCHAN-IN below.

1122	M-INPUT	LD	IX,(CURCHL)	First make IX point to start of

					channel.

1126		LD	HL,+112C	Address of MCHAN-IN routine.

1129		JP	0CBD,CALL-INP	Jump to the control routine.

THE '"M" CHANNEL INPUT' SERVICE ROUTINE

Similarly to the "n" input, the "m" input involves the reading of a byte from the data block. When it is empty, a further block is to be received from Microdrive (Provided that the 'current' data block is not the 'end of file' one) before reading the byte.

112C MCHAN-IN	BIT	0,(CHFLAG)	This is reset to indicate a 'read'

				file.

1130		JR	Z,1134,TEST-M-BF	Jump with 'read' file.

'Reading a write file'

1132	RWF-ERR	RST	20,SH-ERR	Call the error handling routine.

1133		DEFB	+0D

1134	TEST-M-BF	LD	E,(CHBYTE-lo)	Fetch current byte counter.

1137		LD	D,(CHBYTE-hi)

113A		LD	L,(RECLEN-lo)	Fetch record length.

113D		LD	H,(RECLEN-hi)

1140		SCF		Include byte to be read.

1141		SEC	HL,DE	Jump if all bytes have been read.

1143		JR	C,1158,CHK-M-EOF

1145		INC	DE	Include byte to be read in the

				byte counter.

1146		LD	(CHBYTE-lo),E	Store pew byte Counter.

1149		LD	(CHBYTE-hi),D

114C		DEC	DE	Position of character to be read.

114D		PUSH	IX	Save start address of channel.

114F		Abb	IX,DE	IX now points to 'byte to be

				read - 82'.

1151		LD	A,(IX+82)	Fetch the byte.

1154		POP	IX	Restore start of channel.

1156		SCF		Signal 'acceptable code'.

1157		RET		Finished.

If all bytes in the data block have been read, a check is made to see if it is the 'end of file' block, i.e. the last one.

1158	CHK-M-EOF	BIT	1,(RECFLG)	This is set to signal 'EOF'.

115C		JR 	Z,1162,NEW-BUFF 	Jump if not the last block.

115E		XOR	A	Otherwise zero and carry flags are

				returned reset to signal EOF.

115F		ADD	A,+0D	Returned byte is +0D.

1161		RET		Finished.

A new data block is now read from the Microdrive unit.

1162	NEW-BUFF	LD	DE,+0000	The byte counter is cleared.

1165		LD	(CHBYTE-lo),E

1168		LD	(CHBYTE-hi),D

116B		INC	(CHREC)	Increment record number.

116E		CALL	1177,GET-RECD		Fetch a new data block.

1171		XOR	A	Turn off drive motor.

1172		CALL	17F7,SEL-DRIVE

1175		JR	1134,TEST-M-BF	Now read the byte.

THE 'GET A RECORD' SUBROUTINE

This subroutine is used to load a record of a 'PRINT-type file. The number of the wanted record must be stored into CHREC, the drive number into CHDRIV and the filename into CHNAME. If after five passes of the tape the record is not found, or if a checksum error occurs, the error 'File not found' is given.

1177	GET-RECD	LD	A,(CHDRIV)	Fetch drive number.

117A		CALL	17F7,SEL-DRIVE		Start drive motor.

117D	GET-R-2	LD	BC,+04FB	Initialise SECTOR to 1275 (i.e., at

1180		LD	(SECTOR),BC	least five passes of the tape).

1184	GET-R-LP	CALL	11A5,G-HD-RC		Get header and data block.

1187		JR	C,119E,NXT-SCT	Consider next sector with errors, or

1189		JR	Z,119E,NXT-SCT	if it is unused.

118B		CD	A,(RECNUM)	Fetch record number.

118E		CP	(CHREC)	Test against CHREC.

1191		JR	NZ,119E,NXT-SCT	Next sector also if this record is

				not the expected one.

1193		PUSH	IX	Fetch base of "m" channel into HL.

1195		POP	HL

1196		LD	DE,+0052	Points to the start of the buffer.

1199		ADD	HL,DE

119A		CALL	1346,CHKS-BUFF	Return if the checksum is correct.

119D		RET	Z

119E	NXT-SCT	CALL	1312,DEC-SECT	Decrease SECTOR.

11A1		JR	NZ,1184,GET-R-LP	Continue until five passes of the

				tape have been made.

'File not found'

11A3	RS-SH2	RST	20,SH-ERE	Call the error handling routine.

11A4		DEFB	+11

THE 'GET HEADER AND DATA BLOCK' SUBROUTINE

This subroutine is used to collect from the selected Hicrodrive unit a header followed by its data block. Note that the drive motor is to be turned on before calling G-HD-RC. The flags returned denote the following states:

	- zero set, carry reset	The sector is unused.

	- zero reset, carry reset	Successful loading.

	- carry set		With any error.

The 'errors' include wrong checksums, and no matching between the wanted filename (CHNAME) and the loaded one (RECNAM).

11A5	G-HD-RC	CALL	12C4,GET-M-HD2		Fetch the header.

11A8		LD	DE,+001B	Make HL point to RECLCG, i.e.,

11AB		ADD	HL,DE	start of record area.

11AC		CALL	18A9,GET-M-BF		Fetch the record.

11AF		CALL	1341,CHKS-HD-R	Calculate record checksum.

11B2		JR	NZ,11D6,G-REC-ERR	Exit if the checksum is wrong.

11B4		BIT	0,(RECFLG)	This is set to signal a header block.

11B8		JR	NZ,11D6,G-REC-ERR	Exit if a header instead of a data

				block has been fetched.

11BA		LD	A,(RECFLG)	Bit 1 of RECFLG and of REGLEN-hi

11BD		OR	(RECLEN-hi)	are both reset with 'unused sector'.

11C0		AND	+02	Take only bit 1.

11C2		RET	Z	Return with unused sectors.

11C3		PUSH	IX	Make HL point to the start of the

11C5		POP	HL	channel.

11C6		LD	DE,+0047	Points to RECNAM.

11C9		ADD	HL,DE

11CA		LD	BC,+000A	Name is ten characters in length.

11CD		CALL	131E,CHK-NAME	Compare it against CHNAME.

11D0		JR	NZ,11D6,G-REC-ERR	Exit if they do not match.

11D2		LD	A,+FF	Exit with zero and carry flags reset

11D4		OR	A	when successful.

11D5		RET

11D6	G-REC-ERR	SCF		Exit with carry set if any error has

11D7		RET		been detected.

THE '"M" CHANNEL OUTPUT' ROUTINE

The routine is very similar to that for the "N" channel output. The byte passed to the accumulator is stored into the 512-byte buffer. When it is filled, the record is written onto the Microdrive cartridge.

11D8	MCHAN-OUT	LD 	IX,+FFFA 	Point to the start of the channel

11DC		ADD	IX,DE	(i.e. DE-6, see 00BA).

11E1		BIT	0,(CHFLAG)	Continue only if this is a 'write'

11E2		JR 	NZ,11E6,NOREAD 	file.

'Writing to a 'read' file'

11E4		RST	20,SH-ERR	Call the error handling routine.

11E5		DEFB	+0C

11E6	NOREAD	LD	E,(CHBYTE-lo)	Fetch byte counter.

11E9		LD	D,(CHBYTE-hi)

11EC		PUSH	IX	Save start address of channel.

11EE		ADD	IX,DE	Now IX points to 'first free byte

				in the buffer'-82.

11F0		LD	(IX+82),A	Store a byte in the buffer.

11F3		POP	IX	Restore start address of channel.

11F5		INC	DE	Points to first 'free byte' in the

				buffer.

11F6		LD	(CHBYTE-lo),E	Update byte counter,

11F9		LD	(CHBYTE-hi),D

11FC		BIT	1,D	Return if the buffer is not filled

11FE		RET	Z	(position 512 has not been reached).

If the buffer is filled, the routine continues into WR-RECD below.

THE 'WRITE A RECORD ONTO MICRODRIVE' SUBROUTINE

This subroutine is also called by using hook code +26. The record held in the "m" channel pointed by the IX register (with name CHNAME and number CHREC), is written into the first unused sector in the cartridge inserted in the drive CHDRIV. Then the appropriate map bit is set and CHREC is automatically incremented. An error is produced if no more space is available on the cartridge to write the record.

11FF	WR-RECD	LD	A,(CHDRIV)	Fetch drive number.

1202		CALL	17F7,SEL-DRIVE	Turn on the motor.

1205		CALL	120D,WRITE-PRC	Write the record.

1208		XOR	A	Turn off the motor.

1209		CALL	17F7,SEL-DRIVE

120C		RET		Finished.

120D	WRITE-PRC	CALL	1264,CHK-FULL	Check if the cartridge is full,

1210		JR	NZ,121B,NOFULL	and jump if it is not.

1212		CALL	10C4,DEL-M-BUF	Otherwise reclaim the channel.

1215		XOR	A	Turn off drive motors.

1216		CALL	17F7,SEL_DRIVE

'Microdrive full'

1219		RST	20,SH-ERR	Call the error handling routine.

121A		DEFB	+0F

121B	NOFULL	PUSH	IX	Save base address of channel.

121D		LD	B,+0A	Counts ten characters.

121F	CP-NAME	LD	A,(IX+14)	Copy CHNAME into RECNAM.

1222		LD	(IX+71),A

1225		INC	IX

1227		DJNZ	121F,CP-NAME

1229		POP	IX	Restore start of channel.

122B		LD	C,(CHBYTE-lo)	Copy CHBYTE into RECLEN.

122E		CD	(RECLEN-lo),C

1231		LD	A,(CHBYTE-hi)

1234		LD	(RECLEN-hi),A

1237		LD	A,(CHREC)	Copy CHREC into RECNUM.

l23A		LD	(RECNUM),A

123D		PUSH	IX	Make HL point to the start of the data

123F		POP	HL	block workspace, i.e. RECFLG.

1240		LD	DE,+0043

1243		ADD	HL,DE

1244		CALL	1341,CHKS-HD-R	Calculate DESCHK checksum.

1247		LD	DE,+000F	Hake HL point to the start of the

124A		ADD	HL,DE	512-byte buffer.

124B		CALL	1346,CHKS-BUFF	Calculate DCHK checksum.

124E		PUSH	IX	Three useless instructions.

1250		POP	HL

1251		LD	DE,+0047

1254		CALL	1275,SEND-BLK	Send the record to Microdrive.

1257		LD	DE,+0000	Clear CHBYTE.

125A		LD	(CHBYTE-lo),E

125D		LD	(CHBYTE-hi),D

1260		INC	(CHREC)	Finally increment record number.

1263		RET		Finished.

THE 'CHK-FULL' SUBROUTINE

This subroutine is used to check whether the currently used Microdrive unit contains a full cartridge, with no 'free tot use' sectors. The zero flag is returned set if the cartridge is full (i.e. if all map bits are set).

1264	CHK-FULL	LD	L,(CHMAP-lo)	Fetch address of the map.

1267		LD	H,(CHMAP-hi)

i26A		LD	B,+20	Length of the map.

126C	NXT-B-MAP	LD	A,(HL)	Fetch a byte.

126D		CP	+FF	Exit with zero flag reset if not all

126F		RET	NZ	bits are set.

1273		INC	HL	Point to the next byte,

1271		DJNZ	126C,NXT-B-MAP	Loop for all bytes.

1273		XOR	A	Return with zero flag set to signal

1274		RET		that the cartridge is full.

TIlE 'SEND-BLK' SUBROUTINE

The following subroutine fetches the first 'free' header and then writes the

buffer into the sector, provided that the cartridge is not write-protected. Finally the map bit is set.

1275	SEND-BLK	PUSH	IX	Make HL point to the data block

1277		POP	HL	preamble.

1278		LD	DE,+0037

127B		ADD	HL,BE

l27C		PUSH	HL	Save this address.

127D	FAILED	CALL	12C4,GET-M-HD2	Fetch the first header.

1280		CALL	12DF,CHECK-MAP	Check map bit for this header.

1283		JR	NZ,127D,FAILED	Continue if the sector is not 'free

				for use'.

1285		EX	(SP),HL	Now (SP) holds the map bit address;

				and HL the start of the data block

				preamble.

1286		PUSH	BC	Save map bit position.

1287		IN	A,(+EF)	Jump if the write-protect tab is

1289		AND	+01	present.

128B		JR NZ,128F,NO-PRT

'Drive 'write' protected'

128D		RST	20,SH-ERR	Call the error handling routine.

128E		DEFB	+0E

128F	NO-PRT	LD	A,+E6	Start the writing process.

1291		OUT	(+EF),A

1293		LD	BC,+0168	Wait until the first gap is finished.

1296		CALL	18FA,DELAY-BC

1299		CALL	1878,OUT-M-BUF	Write preamble and data block.

129C		LD	A,+EE	Send a signal when finished.

129E		OUT	(+EF),A

12A0		POP	BC	Restore map bit position.

12A1		POP	HL	Restore map bit address.

12A2		LD	A,B	Set the required map bit.

12A3		OR	(HL)

12A4		LD	(HL),A

12A5		RET		Finished.

THE 'CLOSE FILE' SUBROUTINE

This subroutine CLOSEs a 'PRINT-type' "m" channel. If the channel is used for reading, then it is reclaimed; but if it is used for writing, any unsent data in the buffer is written onto the Microdrive cartridge before reclaiming the channel. The entry point CLOSE-M is used when the start address of the channel is held in the HL register pair, while CLOSE-M2 (also used by 'hook code' +23) is used when that address is held in the IX index register.

12A6	CLOSE-M	PUSH	HL	Make IX register point to the start

12A7		POP	IX	of the channel.

12A9	CLOSE-M2	BIT	0,(CHFLAG)	Jump forward when 'reading'.

12AD		JR	Z,12B6,NOEMP

12AF		SET	1,(RECFLG)	Otherwise signal 'EOF' record,

12B3		CALL	11FF,WR-RECD	and write it onto drive.

1236	NOEMP	XOR	A	Switch off motor.

1237		CALL	17F7,SEL-DRIVE

12BA		CALL	10C4,DEL-M-BUF	Reclaim the channel.

12BD		RET		Finished.

THE 'MAIN ERROR RESTART' EMULATION ROUTINE

This routine, called in the format 'CALL ERR-RS / DEFB nn' emulates the sequence 'RST 8 / DEFB nn' that is used (when the main ROM is paged in) to give an error report. ERR-RS is never called from the shadow ROM code.

12BE	ERR-RS	POP	HL	Fetch return address (points to the

				error code).

12BF		LD	A,(HL)	Fetch error code.

12C0		LD	(ERR-NR),A	Store it.

12C3		RST	28,ROMERR	Give the error report.

THE 'FETCH HEADER FROM HICRODRIVE' SUBROUTINE

This subroutine is used to fetch a header from the current Microdrive unit (whose motor must be turned on). The header is loaded into HDFLG...HDCHK. The procedure is repeated unless the checksum is correct.

12C4	GET-M-HD2	PUSH	IX	Make HL point to MDFLAG, i.e. location

12C6		POP	HL	from which the header will be loaded.

12C7		LD	DE,+0028

12CA		ADD	HL,DE

12CB		CALL	18A3,GET-M-HD	Fetch the header.

12CE		CALL	1341,CHKS-HD-R	Calculate checksum.

12D1		JR	NZ,12C4,GET-M-HD2	Repeat if it does not match with the

				'old' checksum.

12D3		BIT	0,(HDFLAG)	Repeat if a record descriptor has

12D7		JR	Z,12C4,GET-M-HD2	been loaded instead of a header.

12D9		RET		Finished.

THE 'CHECK MAP BIT STATE' SUBROUTINE

The bit correspondent to a given sector in the microdrive map is checked. The zero flag is returned set if the bit was reset, and vice-versa. Also the B register will hold, on return, a bit set in the position of the map bit; HL will hold the address of that map bit. The entry point is CHK-MAP-2 when the sector number has to be collected from RECNUM, or CHECK-MAP if from HDNUMB.

12DA	CHK-KAP-2	CD	E,(RECNUM)	Fetch sector number.

12DD		JR	12E2,ENTRY	Jump forward.

12E1	CHECK-MAP	LD	E,(HDNUMB)	Fetch sector number.

12E2	ENTRY	LD	L,(CHMAP-lo)	Fetch map start address.

12E5		LD	H,(CHMAP-hi)

12E8	ENTRY-2	XOR	A	Clear D register.

12E9		LD	D,A

12EA		LD	A,E	Move sector number to A.

12EB		AND	+07	Only 3 less significant bits,

				(i.e. 'bit position').

12ED		SRL	E	Shift out the 'position' from E.

12EF		SRL	E

12F1		SRL	E

12F3		ADD	HL,DE	Calculate map bit address.

12F4		LD	B,A	Pass 'position' to B.

12F5		INC	B	Range is now 1..8.

12F6		XOR	A	Clear A register.

12F7		SCF		Set carry flag.

12F8	ROTATE	RLA		Set a bit in the correct position.

12F9		DJNZ	12F8,ROTATE

12FB		LD	B,A	Exit with B holding that bit.

12FC		AND	(HL)	Set zero flag as required.

12FD		RET		Finished.

THE 'RESET BIT IN MAP AREA' SUBROUTINE

This subroutine is used to reset the bit in the map area corresponding to the sector HDNUMB.

12FE	RES-B-MAP	CALL	12DF,CHECK-MAP	Set B and HL registers with position

				and map address.

1301		LD 	A,B 	Pass bit to be reset to A.

1302		CPL		Reset only that bit and

1303		AND	(HL)	leave other bits unchanged.

1304		LD 	(HL),A 	Store new map byte.

1305		RET		Finished.

THE 'CHECK "PSEUDO-MAP" BIT STATE' SUBROUTINE

This subroutine is apparently equal to the CHECK-MAP subroutine at 12DA, however it does not refer to the standard map, but to a 'pseudo-map' set up in the 512-byte buffer of the "m" channel. This map is used from the ERASE command to mark the sectors to be erased,

1306	TEST-PMAP	PUSH	IX	Make HL point to the start of the

1308		POP	HL	buffer. I.e. to the start of

1309		LD	DE,+0052	the 'pseudo-map' area.

130C		ADD	HL,DE

130D		LD	E,(HDNUMB)	Fetch sector number.

1310		JR	12E8,ENTRY-2	Continue into CHECK-MAP.

THE 'DECREASE SECTOR NUMBER' SUBROUTINE

This short subroutine is frequently called to decrease the content of the system variable SECTOR, used to count a given number of sectors during microdrive operations. The zero flag is returned set when SECTOR reaches zero.

1312	DEC-SECT	LD	BC,(SECTOR)	Decrease (SECTOR).

1316		DEC	BC

1317		LD	(SECTOR),BC

131B		LD	A,B	Set zero flag if SECTOR has reached

131C		OR	C	zero.

131D		RET		Finished.

THE 'CHECK-NAME' SUBROUTINE

Whenever a 'filename' is to be compared against the channel name CHNAME, this subroutine is called. On entry, HL must point to the filename to be compared, while C must contain its length. If the comparison is successful, the zero flag is returned set.

131E	CHK-NAME	PUSH	IX	Save start of channel.

1320		LD	B,+0A	Length of CHNAME.

1322	ALL-CHARS	LD	A,(HL)	Fetch a byte from name.

1323		CP	(IX+14)	Compare it against CHNAME.

1326		JR	NZ,133E,CKNAM-END	Jump if it does not match.

1328		INC	HL	Point to next character.

1329		INC	IX

132B		DEC	B	Decrease 'lengths'.

132C		DEC	C

132D		JR	NZ,1322,ALL-CHARS	Continue until the length of the name

				reaches zero.

132F		LD	A,B	CHNAME remaining length.

1330		OR	A	Exit if successful (CHNAME length has

1331		JR	Z,133E,CKNAM-END	reached zero).

1333	ALLCHR-2	LD	A,(IX+14)	Otherwise check that the following

1336		CP	+20	characters of CHNAME are spaces.

1338		JR	NZ,133E,CKNAM-END	Signal 'unsuccessful' if not spaces.

133A		INC	IX	Continue until the whole CHNAME has

133C		DJNZ	1333,ALCCHR-2	been examined.

133E	CKNAM-END	POP	IX	Restore channel start address.

1340		RET		Finished.

THE 'CALCULATE/COMPARE CHECKSUMS' ROUTINE

This routine is used to calculate HDCHK, DESCHK and DCHK checksums, or to compare the previous checksum against the current one; the zero flag is returned set if the checksums match. The entry point is CHKS-HD-R for HDCHK or DESCHK, or CHKS-BUFF for DCHK checksum. In both cases HL must contain on entry the start address of the block for which the checksum is to be obtained.

1341	CHKS-HD-R	LD	BC,+000E	The block length.

1344		JR	1349,CHKS-ALL	Skip next instruction.

1346	CHKS-BUFF	LD	BC,+0200	The block length.

1349	CHKS-ALL	PUSH	HL	Save the start address.

134A		LD	E,+00	Start with E cleared.

134C	NXT-BYTE	LD	A,E	Add the current byte to the

134D		ADD	A,(HL)	previous sum.

134E		INC	HL	Point to next location.

134F		ADC	A,+01	Include also the carry.

1351		JR	Z,1354,STCHK	Jump when A reaches zero.

1353		DEC	A	Otherwise balance the ADD above.

1354	STCHK	LD	E,A	Update sum.

1355		DEC	BC	Decrement counter.

1356		LD	A,B	Repeat until the counter reaches 0.

1357		OR	C

1358		JR	NZ,134C,NXT-BYTE

135A		LD	A,E	Move checksum into A.

135B		CP	(HL)	Compare with previous checksum.

135C		LD	(HL),A	Store new checksum.

135D		POP	HL	Restore start address.

135E		RET		Finished.

THE 'RESTORE STREAM DATA' SUBROUTINE

This subroutine is entered with BC holding the length of a reclaimed channel, and HL holding the 'stream displacement' for that channel, The stream that refers to this displacement (i.e. the stream attached to the reclaimed channel) is closed. The other stream displacements are updated if they refer to channels moved down after the reclaiming.

135F	REST-STRM	PUSH	HL	Save stream displacement.

1360		LD	A,+10	Counts 16 streams.

1362		LD	HL,+5C16	Start with STRMS-0 address.

1365	NXT-STRM	LD	(X-PTR),HL	Save current address into X-PTR.

1368		LD	E,(HL)	Fetch stream displacement for the

1369		INC	HL	current stream.

136A		LD	D,(HL)

136B		POP	HL	Restore displacement of stream to be

136C		PUSH	HL	closed.

136D		OR	A	Clear carry.

136E		SBC	HL,DE	Jump if this is not the stream to be

1370		JR	NZ,1377,NOTRIGHT	closed.

1372		LD	DE,+0000	Close the stream by storing a

1375		JR	137E,STO-DISP	displacement = 0.

1377	NOTRIGHT	JR	NC,1384,UPD-POINT	Jump if the stream data does not need

					to be updated.

1379		EX	DE,HL	HL holds the current displacement.

137A		OR	A	Clear carry.

137B		SBC	HL,BC	Obtain new displacement.

137D		EX	DE,HL	Move it into DE.

137E	STO-DISP	LD	HL,(X-PTR)	Store the new displacement for

1381		LD	(HL),E	the current stream.

1382		INC	HL

1383		LD	(HL),D

1384	UPD-POINT	LD	HL,(X-PTR)	Fetch pointer of current stream data.

1387		INC	HL	Advance to data for next stream.

1388		INC	HL

1389		DEC	A	Jump back until all 16 streams have

138A		JR	NZ,1365,NXT-STRM	been examined.

138C		LD	(X-PTR-lo),A	Clear X-PTR.

138F		POP	HL	Restore displacement.

1390		RET		Finished.

THE 'RESTORE MAP ADDRESSES' SUBROUTINE

When a map has been deleted, the addresses of the other 'higher' maps have to be updated. The 'REST-MAP' subroutine does this. HL should hold on entry the address of the deleted map.

1391	REST-MAP	LD	BC,+0020	Length of map.

1394		LD	IX,(CHANS)	Point to the first channel other than

1398		LD	DE,+0014	'standard' one.

139B		ADD	IX,DE

139D	LCHAN	LD	A,(IX+0)	Return if the CHANS area is finished.

13A0		CP	+80

13A2		RET	Z

13A3		PUSH	HL	Save 'start' of map.

13A4		LD	A,(IX+4)	Fetch channel specifier.

13A7		AND	+7F	No distinction between 'temporary'

				and 'permanent' channels is made.

13A9		CP	+4D	Jump if this is not an "m" channel.

13AB		JR	NZ,13C1,LPEND

13AD		LD	E,(CHMAP-lo)	Fetch address of map.

13B0		LD	D,(CHMAP-hi)

13B3		SBC	HL,DE	Jump if this map has not been moved.

13B5		JR	NC,13C1,LPEND

13B7		EX	DE,HL	HL = old map address.

13B8		OR	A	Clear carry.

13B9		SBC	HL,BC	Calculate actual start address and

13BB		LD	(CHMAP-lo),L	store it.

13BE		LD	(CMMAP-hi),H

13C1	LPEND	POP	HL	Restore 'start' of deleted map.

13C2		LD	E,(IX+9)	Fetch channel length.

13C5		LD	D,(IX+10)

13C8		ADD	IX,DE	Point to next channel.

13CA		JR	139D,LCHAN	Loop again.

THE '"M" CHANNEL DATA' TABLE

The '25' bytes that compose the initial part of an "M" channel are as follows:

13CC		DEFW	+0008		Main ROM 'output' routine.

13CE		DEFW	+0008		Main ROM 'input' routine.

13D0		DEFB	+CD		"M"+80H (channel specifier).

13D1		DEFW	+11D8		Shadow ROM 'output' routine.

13D3		DEFW	+1122		Shadow ROM 'input' routine.

13D5		DEFW	+0253		Channel length.

13D7		DEFW	+0000		Default for CHBYTE.

13D9		DEFB	+00		Default for CHREC.

13DA		DEFM	" (10 spc) "	Default for CHNAME.

13E4		DEFB	+FF		Default for CHFLAG ('write' channel).

THE 'PREAMBLE DATA' TABLE

The header and the data block preambles are made by the following bytes:

13E5		DEFB	+00,+00,+00

13E8		DEFB	+00,+00,+00

13EB		DEFB	+00,+00,+00

13EE		DEFB	+00,+FF,+FF

Each preamble is used to fetch the start of a block of data when reading from the Microdrive unit.

THE 'MOVE' COMMAND SUBROUTINE

The actual MOVE command involves the 'reading' of a byte from the required stream or channel, and then the 'writing' of that byte onto the 2nd stream or channel. The operation is repeated until the 'end of file' condition occurs. Note that bit 4 of FLAGS3 is set to signal to the CALL-INP subroutine (see 0D03) that the 'end of file' error is not to be reported.

13F1	MOVE	SET	4,(FLAGS3)	See comment above.

13F5		CALL	1455,OP-STRM	Open the first channel.

13F8		LD	HL,(CHANS)	Store current value 0f CHANS.

13FB		PUSH	BC

13FC		CALL	14C7,EX-DSTR2	Exchange D-STR areas.

13FF		CALL	1455,OP-STRM	Open second channel.

1402		CALL	14C7,EX-DSTR2	Exchange D-STR areas again.

1405		POP	DE	Initial start of CHANS.

1406		LD	HL,(CHANS)	Current start of CHANS.

1409		OR	A	Clear carry for a true subtraction.

140A		SBC	HL,DE	HL holds the length of the space

				inserted after the 2nd opening

					(possible maps inserted).

140C		LD	DE,(N-STR1)	Fetch start of first channel.

1410		ADD	HL,DE	Calculate 'current' start.

1411		LD	(N-STR1),HL	Store it.

1414	M-AGAIN	LD	HL,(N-STR1)	Make 'current' the 1st channel

1417		LD	(CURCHL),HL

141A	I-AGAIN	RST	10,CAL8AS	Call INPUT-A in the main ROM to

141B		DEFW	+15E6	read a byte.

141D		JR	C,1423,MOVE-OUT	Jump with acceptable codes.

141F		JR	Z,141A,I-AGAIN	Repeat if no data has been read.

1421		JR	142E,MOVE-EOF	Jump when EOF has been reached.

1423	MOVE-OUT	LD	HL,(N-STR2)	Make 'current' the 2nd channel.

1426		LD	(CURCHL),HL

1429		RST	10,CALBAS	Use main ROM 'PRINT-A' restart to

142A		DEFW	+0010	send the byte through the 2nd channel

142C		JR	1414,M-AGAIN	Repeat the whole procedure.

142E	MOVE-EOF	RES	4,(FLAGS3)	Signal that the MOVE command is

				finished.

1432		LD	HL,(CHANS)	Store current CHANS address.

1435		PUSH	HL

1436		CALL	14C7,EX-DSTR2	Exchange D-STR areas,

1439		CALL	14A4,CL-CHAN	Close the second channel.

143C		CALL	14C7,EX-DSTR2	Exchange D-STR areas again.

143F		POP	DE	Restore initial address of CHANS.

1440		LD	HL,(CHANS)	Fetch current CHANS address.

1443		OR	A	Calculate the amount of bytes

1444		SBC	HL,DE	reclaimed after the deletion of the

				second channel.

1446		LD	DE,(N-STR1)	Calculate the new start address of

144A		ADD	HL,DE	first channel.

144B		LD	(N-STR1),HL

144E		CALL	14A4,CL-CHAN	Close the first channel.

1451		CALL	17B9,RCL-T-CH	Reclaim temporary channels and switch

				off drive motors.

1454		RET		Finished.

THE 'USE STREAM OR TEMPORARY CHANNEL' SUBROUTINE

This subroutine is used from the MOVE command routine above to fetch the start address of the channel attached to a stream (if the command is of the type 'MOVE #N TO ...'), or to open a temporary channel and fetch its start address if the

command is in the form 'MOVE "S";N (;"NAME") TO ...'. In both cases the start address of the channel is returned into N-STR1.

1455	OP-STRM	LD	A,(S-STR1)	Fetch stream number.

1458		INC	A	If stream no. is +FF (i.e.

1459		JR	Z,1466,OP-CHAN	nonexistent), jump to open a

				temporary channel.

145B		DEC	A	A holds the stream number.

145C		RST	10,CAL8AS	Call 'CHAN-OPEN' to select the stream.

145D		DEFW	+1601

145F		LD	HL,(CURCHL)	Fetch channel start address.

1462		LD	(N-STR1),HL	Store it.

1465		RET		Finished.

1466	OP-CHAN	LB	A,(L-STR1)	Fetch channel specifier

1469		CP	+4D	Jump if not "m".

146B		JR	NZ,147F,CHECK-N

146D		CALL	1B29,OP-TEMP-M	Open a temporary "m" channel.

1470		XOR	A	Switch off drive motor.

1471		CALL	17F7,SEL-DRIVE

1474		LD	(N-STR1),IX	Store channel start address.

1478		BIT	2,(RECFLG)	Allow only PRINT-type files with the

147C		RET	Z	MOVE command.

'Wrong file type'

147D		RST	28,SH-ERR	Call the error handling routine.

147E		DEFB	+16

147F	CHECK-N	CP	+4E	Jump if not an "n" channel.

1481		JR	NZ,148B,CHECK-R

1483		CALL	0EA9,OP-TEMP-N	Open a temporary "n" channel.

1486		LD	(N-STR1),IX	Store channel start address,

148A		RET		Finished.

148B	CHECK-R	CP	+54	Jump with "t" channel.

148D		JR	Z,1495,USE-R

148F		CP	+42	Jump with "b" channel.

1491		JR	Z,1495,USE-R

'Nonsense in BASIC'

1493		RST	28,SH-ERR	Call the error handling routine.

1494		DEFB	+00

1495	USE-R	CALL	0B13,OP-RS-CH	Open a permanent "b" or "t" channel.

1498		LD	(N-STR1),DE	Store channel start address.

149C		PUSH	DE	Make IX point to start of channel.

149D		POP	IX

149F		SET	7,(IX+4)	Make the channel 'temporary'.

14A3		RET		Finished.

THE 'CLOSE "MOVE" CHANNEL' SUBROUTINE

This is the opposite subroutine of the preceding one, and is used to CLOSE the channel used by the MOVE command routine. If S-STR1 denotes that a stream was used, no action is made.

14A4	CL-CHAN	LD	A,(S-STR1)	Fetch stream number.

14A7		INC	A	Return if a stream has been used

				(i.e. S-STR1<>+FF).

14A8		RET	NZ

14A9		LD	A,(L-STR1)	Fetch channel specifier.

14AC		CP	+4D	Jump if not "m" channel.

14AE		JR	NZ,14B8,CL-CHK-N

14B0		LD	IX,(N-STR1)	Fetch channel start address.

14B4		CALL	12A9,CLOSE-M2	Close the "m" channel.

14B7		RET		Finished.

14B8	CL-CHK-N	CP	+4E	Return with "b" and "t" channels.

14BA		RET	NZ

14BB		LD	IX,(N-STR1)	Fetch channel start addreus.

14BF		LD	(CURCHL),IX	Make the "n" channel the 'current' one

14C3		CALL	0EF5,SEND-NEOF	Close the "n" channel.

14C6		RET		Finished.

THE 'EXCHANGE DSTR1 AND DSTR2 CONTENTS' SUBROUTINE

This subroutine performs exactly the same task as the EX-D-STR subroutine at 059F, even if it is slightly different. The D-STR1 area is copied into the

D-STR2 one, and vice-versa.

14C7	EX-DSTR2	LD	DE,+5CD6	Start of 1st area.

14CA		LD	HL,+5CDE	Start of 2nd area.

14CD		LD	B,+08	Length of both areas.

14CF	ALL-BYT-2	LD	A,(DE)	Fetch byte from D-STR1.

14D0		LD	C,(HL)	Fetch byte from D-STR2.

14D1		EX	DE,HL	Exchange pointers.

14D2		LD	(HL),C	Store into D-STR1.

14D3		LD	(DE),A	Store into D-STR2.

14D4		EX	DE,HL	Exchange pointers again.

14D5		INC	HL	Advance pointers.

14D6		INC	DE

14D7		DJNZ	14CE,ALL-BYT-2	Continue for all bytes in the

				D-STR areas.

14D9		RET		Finished.

THE 'SAVE DATA BLOCK INTO MICRODRIVE' SUBROUTINE

This is the actual SAVE command referred to the Microdrive (see 082F). The '9' bytes that form the 'header information' are collected from the HD variables and passed to the channel data block; then the memory block, whose 'start' and 'length' are held in the system variables HD-0D and HD-0B, is written onto the Microdrive (provided that there is sufficient space available on cartridge).

14DA	SA-DRIVE	LD	A,(D-STR1)	Fetch drive number.

14DD		CALL	17F7,SEL-DRIVE	Turn on drive motor.

14E0		IN	A,(+EF)	Continue only if the write-protect

14E2		AND	+01	tab was not removed.

14E4		JR	NZ,14E8,START-SA

'Drive 'write' protected'

14E6		RST	20,SH-ERR	Call the error handling

14E7		DEFB	+0E	routine.

14E8	START-SA	LD	HL,(HD-0D)	Fetch 'start' of data.

14EB		LD	(5CE4),HL	Store it into (N-STR2+2).

14EE		CALL	1B29,OP-TEMP-M	Open a temporary "m" channel.

14F1		BIT	0,(CHFLAG)	Continue only if this file does

14F5		JR	NZ,14FC,NEW-NAME	not already exist in the cartridge.

l4F7		CALL	12A9,CLOSE-M2	Close the channel and report the error

'Writing to a 'read' file'

14FA		RST	20,SH-ERR	Call the error handling routine.

14FB		DEFB	+0C

14FC	NEW-NAME	SET	2,(RECFLG)	Signal 'not a PRINT file'.

1500		LD	A,(CHDRIV)	Fetch drive number.

1503		CALL	17E7,SEL-DRIVE	Start motor.

1506		PUSH	IX	Make HL point to the buffer.

1508		POP	HL

1509		LD	DE,+0052

150C		ADD	HL,DE

150D		EX	DE,HL

150E		LD	HL,+5CE6	Address of HD-00.

1511		LD	BC,+0009	Length of HD variables.

1514		LD	(CHBYTE-lo),C	Current position is '9'.

1517		LDIR		Store header informations.

1519		PUSH	DbE	Save address of 'first free byte'.

151A		LD	HL,+0009	Add 9 to 'data length'.

151D		LD	BC,(HD-0B)

1521		ADD	HL,BC

1522		SRL	H	H holds INT(length/5l2), i.e. number

				of sectors required.

1524		INC	H	Allow for a further EOF sector.

1525		PUSH	HL	Save H register.

1526		CALL	1D38,FREESECT	Calculate into E the number of 'free'

				sectors.

1529		POP	HL	Restore H.

152A		LD	A,E	Jump if there are sufficient

152B		CP	H	'free' sectors.

152D		JR	NC,1530,SA-DRI-2

'Microdrive full'

152E		RST	20,SH-ERR	Call the error handling routine.

152F		DEFB	+0F

1530	SA-BRI-2	POP	DE	Restore address of 'first free byte'

				in the buffer.

1531		LD	HL,(5CE4)	Fetch 'start' of block from

				(N-STR2+2) (see 14EB).

1534		LD	BC,(HD-0B)	Fetch 'length' of data.

1538	SA-DRI-3	LD	A,B	Jump when it reaches zero.

1539		OR	C

153A		JR	Z,155E,SA-DRI-4

153D		LD	A,(CHBYTE-hi)	Jump until the buffer space has been

151E		CP	+02	filled.

1541		JR	NZ,1552,SA-DRI-WR

1543		PUSH	HL	Save registers.

1544		PUSH	BC

1545		CALL	123D,WRITE-PRC		Write this data block onto cartridge.

1548		POP	BC	Restore counter.

1549		PUSH	IX	Make DE point to the start of the

154B		POP	HL	buffer.

154C		LD	DE,+0052

154E		ADD	HL,DE

1550		EX	DE,HL

1551		POP	HL	Restore pointer.

1552	SA-DRI-WR	LDI		Move a byte to the buffer.

1554		INC	(CHBYTE-lo)	Increment CHBYTE and go back into the

1557		JR	NZ,SA-DRI-3	loop.

1559		INC	(CHBYTE-hi)

155C		JR	1538,SA-DRI-3

155E	SA-DRI-4	SET	1,(RECFLG)	Mark as 'EOF' record.

1562		CALL	120D,WRITE-PRC	Write the last data block.

1565		LD	A,(COPIES)	Decrease COPIES and exit if it has

1568		DEC	A	reached zero.

1569		JR	Z,1579,END-SA-DR

156B		LD	(COPIES),A	Store new value.

156E		RES	1,(RECFLG)	Signal 'not EOF'.

1572		LD	A,+00	Clear CHREC.

1574		LD	(CHREC),A

1577		JR	14FC,NEW-NAME	Make another copy.

1579	END-SA-DR	XOR	A	Turn off Microdrive motor.

157A		CALL	17F7,SEL-DRIVE

157D		JP	10C4,DEL-M-BUF	Exit via the delete-channel

				subroutine.

THE 'GET HEADER	INFORMATION FROM MICRODRIVE' SUBROUTINE

This subroutine is used to collect the first nine bytes of the file into the "m" channel buffer, i.e. the 'header information' when handling files which have been written using the SAVE command (see 08C8). These bytes are copied into the HD system variables.

1580	F-M-HEAD	LD	HL,(5CE1)	Move 'start' of data into +5CE4.

1583		LD	(5CE4),HL

1586		CALL	1B29,OP-TEMP-M	Open a temporary "m" channel.

1589		BIT	0,(CHFLAG)	Continue only if the file is found.

158D		JR	Z,1591,F-HD-2

'File not found'

158F		RST	20,SH-ERR	Call the error handling routine.

1590		DEFB	+11

1591	F-HD-2	BIT	2,(RECFLG)	Continue only if it is not a

1595		JR	NZ,1599,F-HD-3	'PRINT-type' tile.

'Wrong file type'

1597		RST	20,SH-ERR	Call the error handling routine.

1598		DEFB	+16

1599	F-HD-3	PUSH	IX	Point to the start of the 512-byte

159B		POP	HL	buffer.

159C		LD	DE,+0052

159F		ADD	HL,DE

15A0		LD	DE,+5CE6	Address of HD-00 variable.

15A3		LD	BC,+0009	Length of 'header information'.

15A6		LDIR		Copy header into HD variables.

15A8		RET		Finished.

THE 'LOAD OR VERIFY BLOCK FROM MICRODRIVE' SUBROUTINE

This subroutine is called from the 'LOAD OR VERIFY' subroutine (see 0A66) to load or verify (depending upon the state of bit 7 of FLAGS3) a block of bytes in memory, starting from the address held in the HL register pair. The subroutine

initially calculates the number of records that composes the file; then starts to collect records and to LOAD or VERIFY the data coming in the 512-Byte buffer. When each record has been loaded or verified, the relevant map bit is set, so as to prevent the record to be used again. The map contents are restored to their initial values before returning. Note that the records may be collected from the Microdrive in a random order.

15A9	LV-MCH	LD	(HD-0D),HL	Store 'start'.

15AC		LD	E,(IX+83)	Get 'new' length directly from the

15AF		LD	D,(IX+84)	'header information' held in the

				buffer.

15B2		LD	HL,+0008	Increase 'length' by 8.

15B5		ADD	HL,DE

15B6		SRL	H	The number of records that composes

				the file is computed (INT(length/5l2))

15B8		INC	H	Include the 'EOF' record.

15B9		LD	A,H	Save this value into HD-0B.

15BA		LD	(HD-0B),A

15BD		CALL	1613,SA-MAP	Save the map into the stack.

15C0		LD	DE,+0009	Subtract the 'header length' from

15C3		LD	L,(RECLEN-lo)	the 'block length'.

15C6		LD	H,(RECLEN-hi)

15C9		OR	A

15CA		SBC	HL,DE

15CC		LD	(RECLEN-lo),L	Store actual data block length.

15CF		LD	(RECLEN-hi),H

15D2		PUSH	IX	Make HL point after the nine bytes of

15D4		POP	HL	'header information'.

15D5		LD	DE,+005B

15D8		ADD	HL,DE

15D9		LD	DE,(HD-0D)	Fetch 'start' saved at 15A9.

15DD		JR	15F9,LOOK-MAP	Jump forward.

15DF	USE-REC	CALL	166C,F-REC2	Fetch a record.

15E2		LD	A,(RECNUM)	Repeat if RECNUM is still zero.

15E5		OR	A

15E6		JR	Z,15DF,USE-REC

Now some calculation is performed to obtain into DE the address from which the data coming from the current record, will be loaded or verified. HL will point to the 512-byte buffer.

15E8		RLA		Now A = RECNUM*2.

15E9		DEC	A	A=RECNUM*2-1.

15EA		LD	D,A	Use it as high byte.

15EB		LD	E,+F7	Exclude nine bytes of initial header.

15ED		LD	HL,(HD-0D)	Fetch 'start'.

15F0		ADD	HL,DE	Calculate 'start' to use with this

				record.

15F1		EX	DE,HL	Move it to DE.

15F2		PUSH	IX	Make HL point to the start

15F4		POP	HL	of the 512-byte buffer.

15F5		LD	BC,+0052

15F8		ADD	HL,BC

15F9	LOOK-MAP	EXX		Use alternate registers.

15FA		CALL	12DA,CHK-MAP-2	Check bit state for the current

				record.

15FD		JR	NZ,15DF,USE-REC	Repeat if this record has already

				been fetched.

15FF		LD	A,(HL)	Set map bit to prevent the record

1600		OR	B	from being fetched again.

1601		LD	(HL),A

1602		EXX		Restore initial register values.

1603		CALL	1648,LD-VE-M	Load or verify this record.

1606		LD	A,(HD-0B)	Fetch number of records stored at

				15BA above.

1609		DEC	A	Decrease it and repeat until all

160A		LD	(ED-0B),A	records have been collected.

160D		JR	NZ,15DF,USE-REC

160F		CALL	162D,RE-MAP	Restore map contents.

1612		RET		Finished.

THE 'SAVE MICRODRIVE MAP CONTENTS' SUBROUTINE

This subroutine, called from LV-MCH above, simply copies the '32' bytes that form the Microdrive map into the machine stack.

1613	SA-MAP	POP	HL	Store return address in a currently

1614		LD	(SECTOR),HL	unused variable.

1617		LD	L,(CHMAP-lo)	Fetch map start address.

161A		LD	H,(CHMAP-hi)

161D		LD	BC,+1000	B counts 16 passes (map length/2)

1620	SA-MAP-LP	LD 	E,(HL) 	Fetch a byte from the map.

1621		LD 	(HL),C 	Then clear map byte.

1622		INC	HL	Point to next location.

1623		LD 	D,(HL) 	Fetch another map byte.

1624		LD 	(HL),C 	Then clear map byte.

1625		INC	HL	Point to next location.

1626		PUSH	DE		Save the two collected bytes into

				the stack.

1627		DJNZ	1620,SA-MAP-LP		Continue the loop.

1629		LD 	HL,(SECTOR) 	Fetch return address.

162C		JP 	(HL) 	Make an indirect return.

THE 'RESTORE MICRODRIVE MAP CONTENTS' SUBROUTINE

Exactly the opposite of the subroutine above: the 32 bytes at the top of the

stack are collected and copied into the Microdrive map.

162D	RE-MAP	POP	HL	Fetch return address.

162E		LD	(SECTOR),HL	Store it in a currently unused

				variable.

1631		LD	L,(CHMAP-lo)	Fetch map address.

1634		LD	H,(CHMAP-hi)

1637		LD	DE,+001F	Advance to the last map location.

l63A		ADD	HL,DE

163B		LD	B,+10	Counts 'map/2' bytes.

163D	RE-MAP-LP	POP	DE	Fetch two bytes.

163E		LD	(HL),D	Store first byte in the map.

163F		DEC	HL	Previous location.

1640		LD	(HL),E	Store second byte.

1641		DEC	HL	Previous location.

1642		DJNZ	163D,RE-MAP-LP		Continue the loop.

1644		LD	HL,(SECTOR)	Fetch return address.

1647		JP	(HL)	Make an indirect return.

THE 'LD-VE-M' SUBROUTINE

This subroutine performs the actual LOAD or VERIFY operation. It is entered with HL holding the data start address, and with DE holding the address from which the data have to be loaded or verified.

1648	LD-VE-M	LD	C,(RECLEN-lo)	Fetch record length.

164B		LD	B,(RECLEN-hi)

164E		LD	A,(FLAGS3)	Jump if VERIFYing.

1651		BIT	7,A

1653		JR	NZ,1658,VE-M-E

1655		LDIR		LOAD the data.

1657		RET		Finished.

1658	VE-M-E	LD	A,(DE)	Fetch an existing byte.

1659		CP	(HL)	Compare against loaded one.

165A		JR	NZ,1664,VE-FAIL	Jump if they do not match.

165C		INC	HL	Point to next locations.

165D		INC	DE

165E		DEC	BC 	Repeat until the block has been

165F		LD	A,B	verified.

1660		OR	C

1661		JR	NZ,1658,VE-M-E

1663		RET		Finished.

'Verification has failed'

1664	VE-FAIL	RST	20,SH-ERR	Call the error handling routine.

1665		DEFB	+15

THE 'FETCH A RECORD FROM MICRODRIVE' SUBROUTINE

This subroutine is used to read from the Microdrive unit, a record of the current file (saved with a SAVE command). An error occurs if no record is found after five passes of the cartridge tape. The entry point is F-REC2 when the Microdrive motor is already turned on.

1666	F-REC1	LD	A,(CHDRIV)	Fetch drive number.

1669		CALL	17E7,SEL-DRIVE		Start drive motor.

166C	E-REC2	LD	BC,+04FB	Count five passes of the tape.

166F		LD	(SECTOR),BC

1673	UNTILFIVE	CALL	11A5,G-HD-RC		Fetch header and record.

1676		JR	C,168A,F-ERROR	Jump with any error, or with

1678		JR	Z,168A,F-ERROR	unused sectors.

167A		CALL	12DA,CHK-MAP-2		Check map bit.

167D		JR	NZ,168A,F-ERROR	Jump also with already fetched

				records.

167F		PUSH	IX	Make HL point to the start of the

1681		POP	HL	512-byte buffer.

1682		LD	DE,+0052

1685		ADD	HL,DE

1686		CALL	1346,CHKS-BUFF		Return only with correct checksum.

1689		RET	Z

168A	F-ERROR	CALL	1312,DEC-SECT	Decrease SECTOR.

168D		JR	NZ,1673,UNTILFIVE	And continue until five passes of the

				tape have been made.

'File not found'

168F		RST	20,SH-ERR	Call the error handling routine.

1690		DEER	+11

THE 'RESTORE ADDRESS OF "FILENAME"' ROUTINE

After the 'insertion' of some space, the 'filenames' whose start addresses are held into (N-STR1+2) and (N-STR2+2) have been moved up in the workspace area. This routine is entered with HL holding the channel start address, and with BC

holding the number of 'inserted' bytes. The addresses held into (N-STR1+2) and (N-STR2+2) are then updated, unless the filenames are stored into 'no-dynamic' areas (i.e. before the channel or after STKEND).

1691	REST-N-AD	PUSH	HL	Save 'start of channel' twice.

1692		PUSH	HL

1693		LD	DE,(N-STR2+2)	Restore start address of the second

1697		CALL	16AC,TST-PLACE		filename.

169A		LD	(N-STR2+2),DE

169E		POP	HL	Restore channel start address.

169F		LD	DE,(N-STR1+2)	Restore start address of the first

16A3		CALL	16AC,TST-PLACE		filename.

16A6		LD	(N-STR1+2),DE

l6AA		POP	HL	Restore channel start address.

16AB		RET		Finished.

The subroutine which calculates the new filename address is the following:

16AC	TST-PLACE	SCF		Allow for a further byte.

16AD		SBC	HL,DE	No action is made if the filename is

16AF		RET	NC	before the channel,

16B0		LD 	HL,(STKEND) 	or if it is after STKEND.

16B3		SBC	HL,DE

16B5		RET	C

16B6		EX	DE,HL	Add to DE the number of 'inserted'

16B7		ADD	HL,BC	bytes, so returning the new filename

16B8		EX	DE,HL	address.

16B9		RET		Finished.

16BA...1707	Unused locations (all set to +FF).

THE 'CLOSE-STREAM' ROUTINE

The main ROM 'CLOSE' routine at +16E5 is rather inadequate to deal with Interface's channels:

First, it has a bug that may crash the system when attempting to CLOSE an unopened stream. This is because the CLOSE-2 routine at +1701 does not check whether the displacement data (found by STR-DATA, +171E) is +0000 (signalling a

CLOSEd stream). Thus a channel specifier is loaded from a wrong location (CHANS+3), and finally a call to the INDEXER routine is made to search for the (wrong) specifier into the 'stream look-up table', this will result in a system crash.

Secondly, that routine will only clear the stream data in STRMS area and is not able to manipulate and reclaim the interface's channels as required. So the shadow ROM is paged-in by an instruction fetch at the address +1708 (i.e., the middle of the CLOSE-2 routine in the main ROM). The following routine is then used.

1708	CLOSE-CL	INC	HL	The 'INC HL' at +1708 in main ROM.

1709		RST	30,NEWVARS	Create new variables if required.

170A		SRL	A	Range of stream number is +03..+12.

170C		SUB	+03	And now +00..+0F.

170E		RES	1,(FLAGS3)	Signal 'unsent bytes in the buffer

				have to be sent'.

1712		CALL	1718,CLOSE	Close the stream.

1715		JP	05C1,END1	Finished.

THE 'CLOSE' COMMAND SUBROUTINE

Any stream +00 to +0F may be CLOSEd by loading the stream number into A and then calling this subroutine. The unsent bytes in 'write'-type files are sent or lost depending upon whether bit 1 of FLAGS3 is reset or set. First a call to

STR-DATA1 in the main ROM is made to fetch into BC the 'stream data' for the given stream, and to make HL point to the first of the two data bytes.

1718	CLOSE	RST	10,CALBAS	Call STR-DATA1.

1719		DEFW	+1727

171B		LD	A,C	Return if the stream is already

171C		OR	B	CLOSEd (i.e. stream data = 0).

171D		RET	Z

171E		PUSH	BC

171F		PUSH	HL

1720		LD	HL,(CHANS)	Make HL point to the start of the

1723		DEC	HL	channel attached to the stream to

1724		ADD	HL,BC	be closed.

1725		EX	(SP),HL	HL now holds the address of the

				stream data.

1726		RST	20,CALBAS	A call in the middle of the main ROM

1727		DEFW	+16EB	'CLOSE' routine is made to update

				STRMS contents.

1729		LD	HL,(CHANS)	Make HL point to the first of the

l72C		LD	DE,+0014	'new' channels,

172F		ADD	HL,DE

1730		POP	DE	Restore channel start address.

1731		SCF		Return if the channel is not

1732		SBC	HL,DE	a 'new' one.

1734		POP	BC

1735		RET	NC

1736		PUSH	BC	Save stream data, and

1737		PUSH	DE	channel start address.

1738		EX	DE,HL	Move start of channel to HL.

1739		LD	(CURCHL),HL	Make the channel 'current'.

173C		INC	HL	Advance HL to the channel specifier.

173D		INC	HL

173E		INC	HL

173F		INC	HL

1740		LD	A,(HL)	Fetch channel specifier.

1741		LD	DE,+0005	Points to channel length.

1744		ADD	HL,DE

1745		LD	E,(HL)	Fetch channel length.

1746		INC	HL

1747		LD	D,(HL)

1748		PUSH	DE	Save the 'length'.

1749		CP	+42	Jump with "b" channel.

174B		JR	Z,1751,CL-RS-CH

174D		CP	+54	Jump with "n" and "m" channels.

174F		JR	NZ,175E,CL-N-CH

Now follows the CLOSE routine for the "t" and "b" channels.

1751	CL-RS-CH	BIT	1,(FLAGS3)	Jump if doing a CLEAR#.

1755		JR	NZ,177F,RCLM-CH	(i.e. do not send any data).

1757		LD	A,+0D	Send a carriage return over RS232.

1759		CALL	0C5A,BCHAN-OUT

175C		JR	177F,RCLM-CH	Jump to reclaim the channel.

175E	CL-N-CH	CP	+4E	Jump with "m" channel.

1760		JR	NZ,176D,CL-M-CH

This is the CLOSE routine for the "n" channel,

1762		BIT	1,(FLAGS3)	Jump if doing a CLEAR#.

1766		JR	NZ,177F,RCLM-CH

1768		CALL	0EF5,SEND-NEOF	Send remaining contents of "n"

				buffer.

176B		JR	177F,RCLM-CH

Finally the CLOSE routine for the "m" channel.

176D	CL-M-CH	CP	+4D	Jump if not "m" channel.

176F		JR	NZ,177F,RCLM-CH

1771		POP	DE	Remove 'channel length'.

1772		POP	IX	Start of channel.

1774		POP	DE	Stream data.

1775		BIT	1,(FLAGS3)	Send the EOF record on microdrive if

1779		JP	Z,12A9,CLOSE-M2	not using CLEAR#.

l77C		JP	10C4,DEL-M-BUF	Reclaim "m" channel.

177F	RCLM-CH	POP	BC	Channel length.

1780		POP	HL	Channel start address.

1781		PUSH	BC	Save 'length' again.

1782		RST	10,CALBAS	Call RECLAIM-2 to delete the channel.

1783		DEFW	+19E8

NOTE: If the BREAK key is pressed while the buffer is sent as EOF block, the routine does not reach RCLM-CH or DEL-M-BUF, and it is impossible to delete the channel from BASIC unless using the NEW command. The bug should be eliminated by making the channel 'temporary', by setting bit 7 of channel specifier (at 1740..1741), so the channel will be deleted when any error occurs.

Now all data referring to the stream attached to the channels moved down are updated.

1785		XOR	A	Start with stream 0.

1786		LD	HL,+5C16	Address of data for stream 0.

1789	UPD-STRM	LD	E,(HL)	Fetch stream data.

178A		INC	HL

178B		LD	D,(HL)

178C		DEC	HL	Point to the first byte.

178D		LD	(X-PTR),HL	Store address into X-PTR.

1790		POP	BC	Length of channel.

1791		POP	HL	Stream data for closed channel.

1792		PUSH	HL

1793		PUSH	BC

1794		AND	A	Jump if the stream data found is

1795		SBC	HL,DE	lower than that of the closed stream

1797		JR	NC,17A4,UPD-NXT-S	(i.e. channel has not been moved).

1799		EX	DE,HL	HL holds the fetched Stream data.

179A		AND	A	Calculate into DE the new stream data

179B		SBC	HL,BC	to be stored.

179D		EX	DE,HL

179E		LD	HL,(X-PTR)	Restore stream data address.

17A1		LD	(HL),E	Store new stream data.

17A2		INC	HL

17A3		LD	(HL),D

17A4	UPD-NXT-S	LD	HL,(X-PTR)	Make HL point to next stream data.

17A7		INC	HL

17A8		INC	HL

17A9		INC	A	Increment stream number.

17AA		CP	+10	Loop for all 16 streams.

17AC		JR	C,1789,UPD-STRM

17AE		LD	(X-PTR-hi),+00	Clear X-PTR.

17B2		POP	HL	Remove 'channel length' and

17B3		POP	HL	'stream data'.

17B4		RES	1,(FLAGS3)	Clear 'CLEAR/CLOSE' flag.

17B8		RET		Finished.

THE 'RECLAIM TEMPORARY CHANNELS' SUBROUTINE

This subroutine is called to reclaim from the CHANS area all 'temporary' channels (i.e. with bit 7 of channel specifier set). Also the drive motors are turned off. The routine is always called when any error report occurs, and on some other occasions.

17B9	RCL-T-CH	LD	IX,(CHANS)	Make IX point to first 'non-standard'

17BD		LD	DE,+0014	channel.

17C0		ADD	IX,DE

17C2	EX-CHANS	LD	A,(IX+3)	Jump if the CHANS area is not

17C5		CP	+80	finished.

17C7		JR	NZ,17D2,CHK-TEMPM

17C9		LD	A,+EE	Send a signal to the interface.

17CB		OUT	(+EF),A

17CD		XOR	A	Return via SEL_DRIVE to turn off

17CE		JP	17F7,SEL-DRIVE	drive motors.

17D1		RET		Never executed.

17D2	CHK-TEMPM	LD	A,(IX+4)	Fetch channel specifier.

17D5		CP	+CD	Jump if not a temporary "m" channel.

17D7		JR	NZ,17DE,CHK-TEMPN

17D9		CALL	10C4,DEL-M-BUF	Reclaim "m" channel.

17DC		JR	17B9,RCL-T-CH 	Loop again.

17DE	CHK-TEMPN	CP	+CE 	Jump if not a temporary "n" channel.

17E0		JR 	NZ,17ED,PT-N-CHAN

17E2		LD 	BC,+0114 	Length of "n" channel.

17E5		PUSH	IX	Make HL point to start of channel.

17E7		POP 	HL

17E8		RST 	10,CALBAS 	Call RECLAIM-2 to reclaim channel.

17E9		DEFW	+19E8

17EB		JR 	17B9,RCL-T-CH 	Loop again.

17ED	PT-N-CHAN	LD 	E,(IX+9) 	Fetch channel length.

l7F0		LD 	D,(IX+10)

17F3		ADD 	IX,DE 	Point to next channel.

17F5		JR 	17C2,EX-CHANS 	Loop for the whole CHANS area.

THE 'SELECT DRIVE MOTOR' SUBROUTINE

This subroutine is also called by using 'hook code' +21. On entry, A must hold a drive number in the range 1. .8; the appropriate drive motor is turned on, and an error occurs if the specified drive is not present (or if it contains no cartridge, or

contains an unformatted cartridge). If A holds zero, all motors are turned off. Note that this subroutine returns with interrupts disabled if a motor has been switched on.

17F7	SEL-DRIVE	PUSH	HL	Save HL register pair.

17F8		CP	+00	Jump if a drive motor is to be turned

17FA		JR	NZ,1802,TURN-ON	on.

17FC		CALL	182A,SW-MOTOR	Otherwise switch off all motors.

17FF		EI		Enable interrupts.

1800		POP	HL	Restore HL.

1801		RET		Finished.

1802	TURN-ON	DI		Disable interrupts.

1803		CALL	182A,SW-MOTOR	Switch motors as required.

1806		LD	HL,+1388	First wait about 40 ms.

1809	TON-DELAY	DEC	HL	Decrease counter.

180A		LD	A,H	Has the counter reached zero?

180B		OR	L

180C		JR	NZ,1809,TON-DELAY	Repeat if not.

180E		LD	HL,+1388	Repeat 5000 times the following test:

1811	REPTEST	LD	B,+06	Set a counter.

1813	CMK-PRES	CALL	18E9,TEST-BRK	Give an error if BREAK is pressed.

1816		IN	A,(+EF)	Repeat until 'GAP' signal is found low

1818		AND	+04

181A		JR	NZ,1820,NOPRES

181C		DJNZ	1813,CHK-PRES	Repeat 6 times.

181E		POP	HL	Restore HL.

181F		RET		Finished.

1820	NOPRES	DEC	HL	Becrease counter.

1821		LD	A,H	Has the counter reached zero?

1822		OR	L

1823		JR	NZ,1811,REPTEST	Repeat if not.

1825		CALL	17F7,SEL-DRIVE	Send 'switch off' signals and enable

				interrupts.

'Microdrive not present'

1828		RST	20,SH-ERR	Call the error handling routine.

1829		DEFB	+10

The following subroutine does the actual switching' of the motors, and the selection of the required drive. It is entered with drive number 1...8 (or 0 to switch all motors off) in the A register. The required drive motor is selected, its motor started, while others are disabled.

182A	SW-MOTOR	PUSH	DE		Save DE register pair.

182B		LB	DE,+0100

182E		NEG			A = 0 - drive number.

1830		ADD	A,+09		A = 9 - drive number.

1832		LD	C,A	Move counter to C.

1833		LD 	B,+08 	Loop for 8 microdrives.

1835	ALL-NOTRS	DEC	C	Switch off this microdrive if it is

1836		JR 	NZ,184B,OFF-MOTOR	not the required one.

1838		LD 	A,D 	Otherwise switch on the motor.

1839		OUT	(+F7),A

183B		LD 	A,+EE

183D		OUT 	(+EF),A

183F		CALL	1867,DEL-S-1	Wait about 1 ms.

1842		LD 	A,+EC

1844		OUT 	(+EF),A

1846		CALL	1867,DEL-S-1	Wait about 1 ms.

1849		JR 	185C,NXT-MOTOR 	Continue with next microdrive.

184B	OFF-MOTOR	LD 	A,+EF 	The drive motor Is turned off.

184D		OUT	(+EF),A

184F		LD	A,E

1850		OUT	(+F7),A

1852		CALL	1867,DEL-S-1	Wait about 1 ms.

1855		LD	A,+ED

1857		OUT	(+EF),A

1859		CALL	1867,DEL-S-1	Wait about 1 ms,

185C	NXT-NOTOR	DJNZ	1835,ALL-MOTRS	Loop for 8 microdrives.

185E		LD	A,D	End of drive selection.

185F		OUT	(+F7),A

1861		LD	A,+EE

1863		OUT	(+EF),A

1865		POP	DE	Restore DE register pair.

1866		RET		Finished.

THE '1 MILLISECOND DELAY' SUBROUTINE

This subroutine inserts a delay of about 3600 T cycles. It is called from

SW-MOTOR above.

1867	DEL-S-1	PUSH	BC	Save BC register pair.

1868		PUSH	AF	Save accumulator.

1869		LD	BG,+0087	Inserts a delay of 3553 T cycles.

186C		CALL	18FA,DELAY-BC

186F		POP	AF	Restore registers.

1870		POP	BC

1871		RET		Finished.

THE 'SEND DATA BLOCK TO MICRODRIVE HEAD' SUBROUTINE

This subroutine is used for writing a block of bytes onto a Microdrive cartridge. On entry, HL must hold the start of the block to be written. The block is then sent to the Interface (provided that the write-protect tab is present) in a parallel form (the bytes are converted in a serial form by the hardware). The entry points OUT-M-HD and OUT-M-BUF are used respectively to write headers or data blocks (including preambles).

1872	OUT-M-HD	PUSH	HL	Save block start address.

1873		LD	DE,+001E	Block length.

1876		JR	187C,0UT-M-BLK	Jump forward.

1878	OUT-M-BUF	PUSH	HL	Save block start address.

1879		LD	DE,+021F	Block length.

187C	OUT-N-ELK	IN	A,(+EF)	Check write-protect tab.

187E		AND	+01	Only bit 0.

1880		JR	NZ,1884,NOT-PROT	Jump if tab is present.

'Drive 'write' protected'

1882		RST	20,SH-ERR	Call the error handling routine.

1883		DEFB	+0E

1884	NOT-PROT	LD	A,(IOBORD)	Fetch border colour.

1887		OUT	(+FE),A	Change border colour.

1889		LD	A,+E2	Start writing.

188B		OUT	(+EF),A

188D		INC	D	Increment high counter and copy it

188E		LD	A,D	into A.

188F		LD	B,E	Low counter.

1890		LD	C,+E7	Output port.

1892		NOP		Wait 12 T cycles.

1893		NOP

1894		NOP

1895	OUT-M-BYT	OTIR		Write first block.

1897		DEC	A	Repeat until the whole block has been

1898		JR	NZ,1895,OUT-M-BYT	written.

189A		LD	A,+E6	Stop writing.

189C		OUT	(+EF),A

189E		CALL	0CA9,BORD-REST	Restore border colour.

18A1		POP	HL	Restore block start address.

18A2		RET		Finished.

THE 'RECEIVE BLOCK FROM MICRODRIVE HEAD' SUBROUTINE

This is the opposite routine to the preceding one. On entry, HL must hold the start address of the header block or of the data block (AFTER the preamble). The bytes are collected from Microdrive head and stored In the appropriate block. The entry points are GET-M-HD or GET-M-BUF, depending upon whether the block to be received is a header or a data block.

18A3	GET-M-HD	PUSH	HL	Save start address.

18A4		LD	DE,+000F	Block length.

18A7		JR	18AD,GET-M-BLK	Jump forward.

18A9	GET-M-BUF	PUSH	HL	Save start address.

18AA		LD	DE,+0210	Block length.

18AD	GET-M-BLK	LD	B,E	Copy 'length' into BC in

18AE		LD	C,D	a reversed form.

18AF		INC	C	Increment high byte of 'length'.

18B0		PUSH	BC

18B1	CHK-AGAIN	LD	B,+08	Loop 8 times.

18B3	CHKLOOP	CALL	18E9,TEST-BRK	Give an error if BREAK pressed.

18B6		IN	A,(+EF)	The GAP line is read repeatedly;

18B8		AND	+04	it must be found 'low' after a 'high'

18BA		JR	Z,18B1,CHK-AGAIN	period.

18BC		DJNZ	18B3,CHKLOOP

18BE	CHK-AG-2	LD	B,+06

18C0	CHK-LP-2	CALL	18E9,TEST-BRK

18C3		IN	A,(+EF)

18C5		AND	+04

18C7		JR	NZ,18BE,CHK-AG-2

18C9		DJNZ	18C0,CHK-LP-2

18CB		POP	BC	Restore BC.

18CC		LD	A,+EE	Start reading.

18CE		OUT	(+EF),A

18D0		POP	HL	Restore 'start address'.

18D1		PUSH	HL

18D2	DR-READY	IN	A,(+EF)	Read SYNC line to synchronize the

18D4		AND	+02	reading with the start of the block.

18D6		JR	NZ,18D2,DR-READY	Repeat until SYNC is found low.

18D8		CALL	18E9,TEST-BRK	Give an error if BREAK pressed.

18DB		LD	A,C	A holds the high counter.

18DC		LD	C,+E7	Input port.

18DE	IN-M-BLK	INIR		Read first block.

18E0		DEC	A	Repeat until the whole block has

18E1		JR	NZ,18DE,IN-M-BLK	been read.

18E3		LD	A,+EE	Finished.

18E5		OUT	(+EF),A

18E7		POP	HL	Restore block start address.

18E8		RET

TIlE 'TEST-BRK' SUBROUTINE

The BREAK key is checked and the error 'BREAK into program' is made if it is pressed.

18E9	TEST-BRK	LD	A,+7F	Read port +7FFE.

18EB		IN	A,(+FE)

18ED		RRA		Only bit 0.

18EE		RET	C	Return if SPACE not being pressed.

18EF		LD	A,+FE	Read port +FEFE.

18F1		IN	A,(+FE)

18F3		RRA		Only bit 0.

18F4		RET	C	Return if CAPS SHIFT not being pressed

18F5		LD	(ERR-NR),+14	Store error code.

18F9		RST	28,ROMERR	Report the error.

THE 'DELAY-BC' SUBROUTINE

This subroutine is called to insert delays in the program execution, depending upon the value of BC. The exact delay is (BC * 26 - 43) T cycles.

18FA	DELAY-BC	PUSH	AF	Save accumulator.

18FB	DELAY-BC1	DEC	BC	Decrease counter.

1BFC		LD	A,B	Repeat until the counter reaches 0.

18FD		OR	C

18FE		JR	NZ,18FB,DELAY-BC1

1900		POP	AF	Restore accumulator.

1901		RET		Finished.

The following are two subroutines that are never called from the Shadow ROM code. These subroutines operate evidently on the buffer's contents of a Microdrive channel.

1902	UNKN-1	PUSH	HL

1903		PUSH	IX

1905		POP	HL

1906		LD	BC,+0052

1909		ADD	HL,BC

190A		LD	B,H

190B		LD	C,L

190C		LD	HL,+0000

190F		LD	DE,+0000

1912		EXX

1913		LD	BC,+0200

1916		LD	HL,+0000

1919		LD	DE,+0000

191C	UNKN-2	EXX

191D		LD	A,(BC)

191E		INC	BC

191F		ADD	A,E

1920		LD	E,A

1921		JR	NC,1929,UNKN-3

1923		INC	D

1924		JR	NZ,1929,UNKN-3

1928		EXX

1929	UNKN-3	ADD	HL,DE

192A		EXX

192B		ADC	HL,DE

192D		DEC	BC

192E		LD	A,B

192F		OR	C

1930		JR	NZ,191C,UNKN-2

1932		LD	D,E

1933		EXX

1934		LD	A,D

1935		LD	E,+00

1937		SLA	D

1939		EXX

193A		LD	E,A

193B		RL	E

193D		RL	D

193F		EXX

1940		ADD	HL,DE

1941		EXX

1942		ADC	HL,DE

1944		PUSH	HL

1945		EXX

1946		PUSH	HL

1947		PUSH	BC

1948		POP	HL

1949		POP	BC

194A		LD	E,+00

194C		LD	A,C

194D		CP	(HL)

194E		JR	Z,1952,UNKN-4

1950		INC	E

1951		LD	(HL),A

1952	UNKN-4	INC	HL

1953		LD	A,B

1954		CP	(HL)

1955		JR	Z,1959,UNKN-5

1957		INC	E

1958		LD	(HL),A

1959	UNKN-5	INC	HL

195A		POP	BC

195B		LD	A,C

195C		CP	(HL)

195D		JR	Z,1961,UNKN-6

195F		INC	E

1960		LD	(HL),A

1961	UNKN-6	INC	HL

1962		LD	A,B

1963		CP	(HL)

1964		JR	Z,1968,UNKN-7

1966		INC	E

1967		LD	(HL),A

1968	UNKN-7	LD	A,E

1969		OR	A

196A		POP	HL

196B		RET

l96C	UNKN-8	PUSH	IX

196E		POP	HL

196F		LD	DE,+0052

1972		ADD	HL,DE

1973		LD	BC,+0200

1976	UNKN-9	LD	A,(HL)

1977		XOR	+55

1979		LD	(HL),A

197A		INC	HL

197B		DEC	BC

197C		LD	A,B

197D		OR	C

197E		JR	NZ,1976,UNKN-9

1980		RET

The 'Hook code' routines

THE 'HOOK-CODE' ROUTINE

This routine is entered from 00EB with the A register holding a 'hook code', or an invalid error code. The routine calls a set of subroutines in the shadow ROM, and is intended to help the machine-code user. Only the value held in the accumulator may be passed to the called subroutine.

1981	HOOK-CODE	CP	+18	Continue with 'hook' codes.

1983		JR	C,1987,CLR-ERR

'Hook code error'

1985		RST	20,SH-ERR	Call the error handling routine.

1986		DEFB	+12

1987	CLR-ERR	LD	(ERR-NR),+FF	The 'error' is cleared.

198B		SET	2,(FLAGS)

198F		INC	HL	Advance return address past the

				error code.

1990		EX	(SP),HL	Store new return address; the initial

				value of A goes into H.

1991		PUSH	HL	Save this value.

1992		ADD	A,A	Multiply code by two.

1993		LD	D,+00	Pass offset into DE.

1995		LD	E,A

1996		LD	HL,+19A9	Start of 'hook code addresses' table.

1999		ADD	HL,DE	Index into this table.

199A		LD	E,(HL)	Fetch low byte of the address.

199B		INC	HL

199C		LD	D,(HL)	Fetch high byte.

199D		POP	AF	Restore initial value of A.

199E		LD	HL,+0700	Return address is UNPAGE.

19Al		PUSH	HL

19A2		EX	DE,HL	Move address to HL.

l9A3		JP	(HL)	Jump to the 'hook code' routine.

THE 'HOOK CODE +32' ROUTINE

This 'hook code' is designed to call (when the main ROM is paged in) any subroutine held in the shadow ROM. The address of the subroutine to be called is taken from HD-11.

19A4	HOOK-32	LD	HL,(HD-11)	Fetch address of the routine.

19A7		JP	(HL)	Jump to the routine.

THE 'HOOK CODE +31' ROUTINE

This 'hook code' has the task of creating the new system variables if nonexistent. Note that the routine is made by a single RET instruction, because the variables have been created on entry to the shadow RON.

19A8	HOOK-3l	RET		Jump 	indirectly to UNPAGE.

THE 'HOOK CODE ADDRESSES' TABLE

This jump table is made by the 24 addresses of the routines called by using the various 'hook codes'. Note that hook code +2B jumps incorrectly to the same routine as hook code +22. The correct address seems to be +1AF0.

19A9		DEFW	+19D9,CONS-IN	Hook code	+1B.

19AB		DEFW	+19EC,CONS-OUT	Hook code	+1C.

19AD		DEFW	+0B81,BCHAN-IN	Hook code	+1D.

19AF		DEFW	+0C5A,BCHAN-OUT	Hook code	+1E.

1981		DEFW	+19FC,PRT-OUT	Hook code	+1F.

1983		DEFW	+1A01,KBD-TEST	Hook code	+20.

1985		DEFW	+17F7,SEL-DRIVE	Hook code	+21.

1987		DEFW	+1B29,OP-TEMP-M	Hook code	+22.

1989		DEFW	+12A9,CLOSE-M2	Hook code	+23.

198B		DEFW	+1D6E,ERASE	Hook code	+24.

198D		DEFW	+1A09,READ-SEQ	Hook code	+25.

198F		DEFW	+11FF,WR-RECD	Hook code	+26.

19C1		DEFW	+1A17,RD-RANDOM	Hook code	+27.

19C3		DEFW	+1A4B,RD-SECTOR	Hook code	+28.

19C5		DEFW	+1A86,RD-NEXT	Hook code	+29.

19C7		DEFW	+1A91,WR-SECTOR	Hook code	+2A.

19C9		DEFW	+1B29,OP-TEMP-M	Hook code	+2B.

19CB		DEFW	+10C4,DEL-M-BUF	Hook code	+2C.

19CD		DEFW	+0EA9,OP-TEMP-N	Hook code	+2D.

19CF		DEFW	+1A24,CLOSE-NET	Hook code	+2E.

19D1		DEFW	+1A31,GET-PACK	Hook code	+2F.

19D3		DEFW	+0DB2,SEND-PACK	Hook code	+30.

19D5		DEFW	+19A8,HOOK-31	Hook code	+31.

19D7		DEFW	+19A4,HOOK-32	Hook code	+32.

THE 'CONSOLE INPUT' SUBROUTINE

This subroutine is called by using 'hook code' +1B. It simply waits until a key is pressed and returns the character code in the A register. This 'hook code' has been included because the keyboard is not scanned when the main ROM is paged-in.

19D9	CONS-IN	EI		Enable interrupts.

19DA		RES	5,(FLAGS)	Signal 'ready for a new key'.

19DE	WTKEY	HALT		Wait 1/50th of second.

19DF		RST	10,CALBAS	Call the keboard scan routine

19E0		DEFW	+02BF	in the main ROM.

19E2		BIT	5,(FLAGS)	Repeat the scan if no key has been

19E6		JR	Z,19DE,WTKEY	pressed.

19E8		LD	A,(LAST-K)	Fetch character code.

19EB		RET		Finished.

THE 'CONSOLE OUTPUT' SUBROUTINE

This subroutine is called by using 'hook code' +1C. The character held in the A register is printed on the screen, with scroll suppressed.

19EC	CONS-OUT	PUSH	AF	Save character to be printed.

19ED		LD	A,+FE	Use stream '-2' (Screen).

19EF	OUT-CODE	LU	HL,+5C8C	This is SCR-CT.

19F2		LD	(HL),+FF	Set scroll counter.

19F4		RST	10,CALBAS	Call CHAN-OPEN in the main ROM to

19F5		DEFW	+1601	select the stream.

1SF7		POP	AF	Restore character.

19F8		RST	10,CALBAS	Call 'PRINT-A' restart to print the

19F9		DEFW	+0010	character.

19FB		RET		Finished.

THE 'PRINTER OUTPUT' SUBROUTINE

This subroutine is called by using hook code +1F. This is identical to the preceding one, but the output is directed to the stream +03 (normally the ZX

Printer).

19FC	PRT-OUT	PUSH	AF	Save character to be printed.

19FD		LD	A,+03	Select stream 3.

19FF		JR	196F,OUT-CODE	Jump back.

THE 'KEYBOARD TEST' SUBROUTINE

This is called by using 'hook code' +20. The keyboard is scanned and the zero flag returned reset if any key has been pressed.

1A01	KBD-TEST	XOR	A	 Clear A, allowing for the whole

				 keyboard to be examined.

1A02		IN	A,(+FE)	 Read the keyboard.

1A04		AND	+1F	 Only 5 less significant bits.

1A06		SUB	+1F	 Return with sign negative and zero

1A08		RET		 flag reset if any key has been

				 pressed.

THE 'READ SEQUENTIAL' SUBROUTINE

This is called by using 'hook code' +25. The subroutine reads into the datablock of the current "m" channel, the next record of a named PRINT-type file. On entry IX must hold the "m" channel start address, and CHREC the number of the current record. CHREC will be automatically incremented. CHDRIV must hold the drive number and CHNAME must hold the file name.

1A09	READ-SEQ	BIT	1,(RECFLG)	Jump if the current record is not

1A0D		JR	Z,1A14,INCREC	the EOF one.

1A0F		LD	(ERR-NR),+07	Otherwise signal 'end of file'.

1A13		RST	28,ROMERR	Report the error.

1A14	INCREC	INC	(CHREC)	Increment record number and continue

					into RD-RANDOM.

THE 'READ RANDOM' SUBROUTINE

This subroutine is called by using 'hook code' +27. The record number CHREC of a PRINT-type file is loaded into the data block. The other variables are to be set as for READ-SEQ above.

1A17	RD-RANDOM	CALL	1177,GET-RECD	Load CHREC record.

1A1A		BIT	2,(RECFLG)	Return only if this is a PRINT-type

1A1E		RET	Z	file.

1A1F		CALL	10C4,DEL-M-BUF		Otherwise reclaim the channel, and

				report the error.

'Wrong file type'

1A22		RST	20,SH-ERR	Call the error handling routine.

1A23		DEFB	+16

THE 'CLOSE NETWORK CHANNEL' SUBROUTINE

This is called by using 'hook code' +2E. First, the remaining bytes in the "n" channel buffer whose base address is held in the CURCHL system variable, are sent as EOF block (if the channel is opened for writing). The channel is then reclaimed.

1A24	CLOSE-NET	CALL	0EF5,SEND-NEOF	Send the EOF block if required.

1A27		PUSH	IX	Move channel start address to HL.

1A29		POP	HL

1A2A		LD	BC,+0114	Length of "n" channel.

1A2D		RST	10,CALBAS	Call RECLAIM-2 to delete the channel.

1A2E		DEFW	+19E8

1A30		RET		Finished.

THE 'GET PACKET FROM NETWORK' SUBROUTINE

This is called by using 'hook code' +2F. Unfortunately the subroutine is unusable, because the carry flag (that signals if an error has occurred) is corrupted by exit via the BORD-REST subroutine. You may use GET-N-BUF at 03DF to read a packet.

1A31	GET-PACK	LD	A,(IOBORD)	Fetch border colour.

1A34		OUT	(+FE),A	Change border colour.

1A36		DI		Disable interrupts.

1A37		CALL	0F1E,WT-SCOUT	Wait for a 'scout' leader.

1A3A		JR	NC,1A46,GP-ERROR	Jump if 'time-out' occurs.

1A3C		CALL	0E18,GET-NBLK	Wait for header and data block.

1A3F		JR	NZ,1A46,GP-ERROR	Jump with any error.

1A41		EI		Enable interrupts.

1A42		AND	A	Reset carry to signal 'successful'.

1A43		JP	0CA9,BORD-REST	But it is corrupted into BORD-REST.

1A46	CF-ERROR	SCF		Signal 'error'

1A47		EI		Enable interrupts.

1A48		JP	0CA9,BORD-REST	Again the carry flag will be

				corrupted.

THE 'READ SECTOR' SUBROUTINE

This is called by using 'hook code' +28. Before using this, you must start the required drive motor, and store a sector number into CHREC. The data block stored into the given sector is then read in the channel area (pointed by IX), and used if it is a PRINT-type record. The carry flag is returned reset if the reading is successful.

1A4B	RD-SECTOR	LD	HL,+00F0	Counts through 240 sectors.

1A4E		LD	(SECTOR),HL

1A51	NO-GOOD	CALL	12C4,GET-M-HD2	Get a header.

1A54		LD	A,(HDNUM)	Fetch current sector number.

1A57		CP	(CHREC)	Compare with given sector number.

1A5A		JR	Z,1A63,USE-C-RC	Jump if found the required sector.

1A5C		CALL	1312,DEC-SECT	Otherwise decrease SECTOR.

1A5E		JR	NZ,1A51,NO-G00D	Jump until 240 sectors have been

				examined.

'File not found'

1A61		RST	20,SH-ERR	Call the error handling routine.

1A62		DEFB	+11

1A63	USE-C-RC	PUSH	IX	Make HL point to RECFLG (i.e. sTart

1A65		POP	HL	of data block.

1A66		LD	DE,+0043

1A69		ADD	HL,DE

1A6A		CALL	18A9,GET-M-BUF	Read data block.

1A6D		CALL	1341,CHKS-HD-R	Calculate current checksum.

1A70		JR	NZ,1A81,DEL-B-CT	Jump if it does not match with old

				checksum.

1A72		LD	DE,+000F	Make HL point to start of buffer.

1A75		ADD	HL,DE

1A76		CALL	1346,CHKS-BUFF	Calculate checksum of buffer.

1A79		JR	NZ,1A81,DEL-B-CT	Jump if it does not match with old

				checksum.

1A7B		OR	A	Return with carry flag reset if

1A7C		BIT	2,(RECFLG)	this is a PRINT-type file.

1A80		RET	Z

1A81	DEL-B-CT	CALL	1AE0,CLR-BUFF	Otherwise clear buffer contents.

1A84		SCF		Return with carry flag set to signal

1A85		RET		the error.

THE	'READ NEXT SECTOR' SUBROUTINE

This is used by using 'hook code' +29. The first header and data block that pass through the Microdrive head are copied into the channel area pointed by IX. As with the previous subroutine, the drive motor is to be started before calling it.

1A86	RD-NEXT	LD	HL,+00F0	Initialise SECTOR to 240.

1A89		LD	(SECTOR),HL

1A8C		CALL	12C4,GET-M-HD2	Fetch the first header.

1A8F		JR	1A63,USE-C-RC	Continue back.

THE 'WRITE SECTOR' SUBROUTINE

This is used by using 'hook code' +2A. It is the opposite routine of 'RD-SECTOR' above. The Microdrive unit is to be started before calling the routine. The current data block in the "m" channel pointed by the IX register is written onto the sector whose number is specified by CHREC. Other channel variables, such as CHNAME, are to be set as required.

1A91	WR-SECTOR	LD	HL,+00F0	Pass through 240 sectors.

1A94		CD	(SECTOR),HL

1A97		PUSH	IX	Make HL point to the data block

1A99		POP	HL	preamble.

1A9A		LD	DE,+0037

1A9D		ADD	HL,DE

1A9E		PUSH	HL	Save this address.

1A9F		LD	DE,+000C	Now point to RECFLG.

1AA2		ADD	HL,DE

1AA3		CALL	1341,CHKS-HD-R	Calculate DESCHK checksum.

1AA6		LD	DE,+000F	Now point to the buffer.

1AAA		CALL	1346,CHKS-BUFF	Calculate DCHK checksum.

1AAD	WR-S-l	CALL	12C4,GET-M-HD2	Get a header.

1AB0		LD	A,(HDNUMB)	Fetch current sector number.

1AB3		CP	(CHREC)	See whether it is the expected one.

1AB6		JR	Z,1ABF,WR-S-2	Jump if so.

1AB8		CALL	1312,DEC-SECT	Otherwise decrease SECTOR.

1ABB		JR	NZ,1AAD,WR-S-l	Loop until 240 sectors have been

				examined.

'File not found'

1ABD		RST	20,SH-ERR	Call the error handling routine.

1ABE		DEFB	+11

1ABF	WR-S-2	IN	A,(+EF)	Continue if the write-protect tab

1AC1		AND	+01	is present.

1AC3		JR	NZ,1AC7,WR-S-3

'Drive write protected'

1AC5	RS-SH	RST	20,SH-ERR	Call the error handling routine.

1AC6		DEFB	+0E

1AC7	WR-S-3	LD	A,+E6	Start writing.

1AC9		OUT	(+EF),A

1ACB		LD	BC,+0168	Wait until the first gap is finished.

1ACE		CALL	18FA,DELAY-BC

1AD1		POP	HL	Restore address of data block preamble

1AD2		CALL	1878,OUT-M-BUF	Write data block onto cartridge.

1AD5		LD	A,+EE	Stop writing.

1AD7		OUT	(+EF),A

1AD9		CALL	12DF,CHECK-MAP	Finally set the appropriate map bit.

1ADC		LD	A,B

1ADD		OR	(HL)

1ADE		LD	(HL),A

1ADF		RET		Finished.

THE 'CLEAR BUFFER CONTENTS' SUBROUTINE

This subroutine is called from RD-SECTOR and RD-NEXT subroutines to clear the data received into the "m" buffer, if they are not part of a PRINT-type file.

1AE0	CLR-BUFF	PUSH	IX	Make HL point to the start of the

1AE2		POP	HL	"m" buffer.

1AE3		LD	DE,+0052

1AE6		ADD	HL,DE

1AE7		LD	D,H	Copy this address into DE.

1AE8		LD	E,L

1AE9		INC	DE	'Destination' is next byte.

1AEA		LD	BC,+01FF	Buffer length - 1.

1AED		LDIR		Clear the buffer.

1AEF		RET		Finished.

THE 'OPEN A PERMANENT "M" CHANNEL' SUBROUTINE

This is the actual OPEN corinnand referred to the "m" channel. A permanent "m" channel is opened, and it is attached to the stream held into S-STR1 (provided that the file is a PRINT-type file).

1AF0	OP-M-STRM	LD	A,(S-STR1)	Fetch stream number.

1AF3		ADD	A,A	Multiply by two.

1AF4		LD	HL,+5Cl6	Address of data for stream 0.

1AF7		LD	E,A	Use (stream*2) as offset.

1AF8		LD	D,+00

1AFA		ADD	HL,DE	Index into STRMS area.

1AFB		PUSH	HL	Save address of data for the required

				stream.

1AFC		CALL	1B29,OP-TEMP-M	Open a temporary "m" channel.

1AFF		BIT	0,(CHFLAG)	Jump if this is a 'read' file.

1B03		JR	Z,1B0D,MAKE-PERM

1B05		IN	A,(+EF)	Jump if the write-protect tab is

1B07		AND	+01	present.

1B09		JR	NZ,1B0D,MAKE-PERM

'Drive 'write' protected'

1B0B		RST	20,SH-ERR	Call the error handling routine.

1B0C		DEFB	+0E

1B0D	MAKE-PERN	RES	7,(IX+4) 	Make the channel permanent.

1B11		XOR	A	Switch off drive motors.

1B12		CALL	17F7,SEL-DRIVE

1B15		BIT	0,(CHFLAG)	Jump with 'write' files.

1B19		JR	NZ,1B23,STORE-DSP

1B1B		BIT	2,(RECFLG)	Jump with PRINT-type 'read' files.

1B1F		JR	Z,1B23,STORE-DSP

'Wrong file type'

1B21		RST	20,SH-ERR	Call the error handling routine.

1B22		DEFB	+16

1B23	STORE-DSP	EX 	DE,HL	DE holds new stream data.

1B24		POP	HL	Restore stream address.

1B25		LD	(HL),E 	Store stream data into STRMS area.

1B26		INC	HL

1B27		LD	(HL),D

1B28		RET		Finished.

THE 'OPEN TEMPORARY "M" CHANNEL' SUBROUTINE

This fundamental subroutine is used to open a temporary "m" channel in the CHANS area. First a temporary "m" channel is created. Then the drive whose number is held into D-STR1 is started, and searched for a file whose name is held into

N-STR1. A map area is created (unless it already exists), and its contents are setup according to the cartridge contents (the bits reset indicate 'free for use' sectors). Various flags are returned as follows:

	- bit 0 of CHFLAG	set with 'write' files.

	- bit 1 of RECFLG	set with EOF block.

	- bit 2 of RECFLG	set with PRINT-type files.

On exit, HL holds a 'stream data' displacement that may be used to attach the channel to a stream. The drive motor will not be switched off. Note that H'L' is corrupted and the user must preserve its value when using this routine from BASIC.

1B29	OP-TEMP-M	CALL	0FE8,SET-T-MCH	Create a temporary "m" channel.

1B2C		PUSH HL	Save 'stream displacement'

1B2D		LD	A,(CHDRIV)	Fetch drive number.

1B30		CALL	17F7,SEL-DRIVE	Turn on drive motor.

1B33		LD	BC,+00FF	Count 255 sectors.

1B36		LD	(SECTOR),BC

1B3A	OP-F-1	CALL	11A5,G-HD-RC	Get header and data block.

1B3D		JR	C,1B5F,OP-F-4	Jump with any error.

1B3F		JR	Z,1B5C,OP-F-3	Jump with 'free' sectors.

1B41		RES	0,(CHFLAG)	Signal 'read file' if the file is

				already present on cartridge.

1B45		LD	A,(RECNUM)	Jump if this is not the 1st record.

1B48		OR	A

1B49		JR	NZ,1B57,OP-F-2

1B4B		PUSH	IX	Make HL point to the data buffer.

1B4D		POP	HL

1B4E		LD	DE,+0052

1B51		ADD	HL,DE

1B52		CALL	1346,CHKS-BUFF	Calculate new DCHK checksum.

1B55		JR	Z,1B6C,OF-F-5	Jump it it is equal to the old one.

1B57	OP-F-2	CALL	117D,GET-R-2	Fetch first record of file.

1B5A		JR	1B6C,OP-F-5	Jump forward.

1B5C	OP-F-3	CALL	12FE,RES-B-MAP	Reset map bit to signal 'free	sector'

1B5F	OP-F-4	CALL	1312,DEC-SECT	Decrease SECTOR.

1B62		JR	NZ,1B3A,OP-F-1	Consider all 255 sectors.

1B64		RES	1,(RECFLG)	'No EOF'.

1B68		RES	2,(RECFLG)	'PRINT-type file' (opened for writing)

1B6C	OP-F-5	POP	HL	Restore stream 'stream data'.

1B6D		RET		Finished.

The Microdrive command routines

THE 'FORMAT' COMMAND ROUTINE

The action of FORMATting a new cartridge is performed by this subroutine. It is entered with the drive number into D-STR1, the cartridge name address and length into N-STR1.

1B6E	FORMAT	CALL	0FE8,SET-T-MCH	Create channel and map.

1B71		LD	A,(CHDRIV)	Fetch drive number.

1B74		CALL	182A,SW-MOTOR	Turn on the motor.

1B77		LD	BC,+32C8	Wait before checking the write-

1B7A		CALL	18FA,DELAY-BC	protect tab.

1B7D		DI		Disable interrupts.

1B7E		IN	A,(+EF)	Continue only if the tab is

1B80		AND	+01	present.

1B82		JR	NZ,1B86,FORMAT-1

'Drive 'write' protected'

1B84		RST	20,SH-ERR	Call the error handling routine.

1B85		DEFB	+0E

1B86	FORMAT-1	LD	A,+E6	Start writing.

1B88		OUT	(+EF),A

1B8A		LD	BC,+00FF	Pass through 255 sectors.

1B8D		LD	(SECTOR),BC

1B91		PUSH	IX	Make DE point to HDNAHE.

1B93		POP	HL

1B94		LD	DE,+002C

1B97		ADD	HL,DE

1B98		EX	DE,HL

1B99		LD	HL,+FFE2	Now make HL point to CHNAME

1B9C		ADD	HL,DE	(i.e. cartridge name).

1B9D		LD	BC,+000A	Name length.

1BA0		LDIR		Copy cartridge name into HDNAME.

1BA2		XOR	A	Use 'invisible' name by storing zero

1BA3		LD	(RECNAM),A	as first character of the record name.

1BA6		SET	0,(HDFLAG)	Mark the header block.

1BAA		RES	0,(RECFLG)	Mark the data block.

1BAE		SET	1,(RECFLG)	Mark as 'EOF' block.

1BB2		PUSH	IX	Make HL point to the start of the

1BB4		POP	HL	data buffer.

1BB5		LD	DE,+0052

1BB8		ADD	HL,DE

Now the data buffer is filled with bytes +FC; and the checksums are calculated.

1BB9		LD	B,+00	Counts 256 bytes.

1BBB		LD	A,+FC	The byte to be stored.

1BBD	FILL-B-F	LD	(HL),A	Fill 256 bytes.

1BBE		INC	HL

1BBF		BJNZ	1BBD,FILL-B-F

1BC1	FILL-B-F2	LD	(HL),A	Fill next 256 bytes.

1BC2		INC	HL

1BC3		DJNZ	1BC1,FILL-B-F2

1BC5		PUSH	IX	Point to start of data block

1BC7		POP	DE	workspace (i.e. RECFLG).

1BC8		LD	HL,+0043

1BCB		ADD	HL,DE

1BCC		CALL	1341,CHKS-HD-R	Calculate DESCHK checksum.

1BCF		LD	DE,+000F	Make HL point to the data buffer.

1BD2		ADD	HL,DE

1BD3		CALL	1346,CHKS-BUFF

Now this data block is written in all sectors with HDNUMB numbered from 254 to 1

1BD6 WR-F-TEST	CALL	1312,DEC-SECT	Decrease SECTOR.

1BD9		JR	Z,1C0A,TEST-SCT	Jump when SECTOR has reached zero.

1BDB		LD	(HDNUMB),C	Take HDNUMB from SECTOR.

1BDE		PUSH	IX	Make HL point to the start of the

1BE0		POP	HL	header workspace, i.e. HDFLAG.

1BE1		LD	DE,+0028

1BE4		ADD	HL,DE

1BE5		CALL	1341,CHKS-HD-R	Calculate HDCHK checksum.

1BE8		LD	DE,+FFF4	Make HL point to the header block

1BEB		ADD	HL,DE	preamble.

1BEC		CALL 1872,OUT-M-HD		Write the header onto the cartridge.

1BEF		LD	BC,+01B2	Wait to create part of the first gap.

1BF2		CALL	18FA,DELAY-BC

1BF5		PUSH	IX	Make HL point to data block preamble.

1BF7		POP	HL

1BF8		LD	DE,+0037

1BFB		ADD	HL,DE

1BFC		CALL	1878,OUT-M-BUF	Write the data block.

1BFF		LD	BC,+033F	Part of the second gap is created.

1C02		CALL	1BFA,DELAY-BC

1C05		CALL	18E9,TEST-BRK	Give an error if BREAK has been

				pressed.

1C08		JR	18D6,WR-F-TEST	Continue with next sector.

1C0A	TEST-SCT	LD	A,+EE	Stop writing.

1C0C		OUT	(+EF),A

1C0E		LD	A,(CHDRIV)	Fetch drive number.

1C11		CALL	17F7,SEL-DRIVE	Start motor.

Now the sectors contain 'test data', and are to be read back to see if they are usable. If the checksums are correct, the appropriate map bit is reset to signal 'free for use' sectors.

1C14		LD	BC,+00FF	Pass through 255 sectors,

1C17		LD	(SECTOR),BC

1C1B	CHK-SCT	CALL	12C4,GET-H-HD2	Fetch a header.

1C1E		CALL	12DF,CHECK-MAP	Check map bit and jump with

1C21		JR	Z,1C3E,CHK-NSECT	examined sectors.

1C23		PUSH	IX	Make HL point to start of data block

1C25		POP	HL	workspace (i.e. RECFLG).

1C26		LD	DE,+0043

1C29		ADD	HL,DE

1C2A		CALL	18A9,GET-M-BF	Fetch data block.

1C2D		CALL	1341,CHKS-HD-R	Calculate DESCHK checksum.

1C30		JR	NZ,1C3E,CHK-NSECT	Jump with faulty sectors.

1C32		LD	DE,+000F	Make HL point to the data buffer.

1C35		ADD	HL,DE	Start of data buffer.

1C36		CALL	1346,CHKS-BUFF	Calculate DCHK checksum.

1C39		JR	NZ,1C3E,CHK-NSECT	Jump with faulty sectors.

1C3B		CALL	12FE,RES-B-MAP	Reset map bit with usable sectorS.

1C3E	CHK-NSECT	CALL	1312,DEC-SECT	Decrease SECTOR.

1C41		JR	NZ,1C1B,CHK-SCT	Check all sectors.

1C43		CALL	1E3E,IN-CHK	Initialise RECFLG, BECLEN, and DESCHK.

At this point all sectors that have been found 'usable' (marked with a reset bit in the map) are written with RECFLG and RECLEN zeroed, as to mark them 'working' for future use.

1C46	MARK-FREE	CALL	1264,CHK-FULL	Jump until all bits in the map

1C49		JR	NZ,1C53,MK-BLK	are made set.

1C48		XOR	A	Turn off drive motors.

1C4C		CALL	17F7,SEL-DRIVE

1C4F		CALL	10C4,DEL-M-BUF	Reclaim "m" channel and map.

1C52		RET		Finished.

1C53	MK-BLK	CALL	1275,SEND-BLK	Write data block in the next 'free'

				sector.

1C56		JR	1C46,MARK-FREE	Jump back.

THE 'CAT' COMMAND ROUTINE

This subroutine makes a CATalogue of the cartridge inserted in the drive whose number must be specified by D-STR1. S-STR1 must hold the stream to which the catalogue is to be directed.

1C58	CAT	LD	A,(S-STR1)	Fetch stream number.

1C5B		RST	10,CALBAS	Call CHAN-OPEN to select the

1C5C		DEFW	+1601	specified stream.

1C5E		CALL	0FE8,SET-T-MCH	Set a temporary "m" channel.

1C61		LD	A,(CHDRIV)	Fetch drive number.

1C64		CALL	17F7,SEL-DRIVE	Turn on drive motor.

1C67		LD	BC,+00FF	Pass through 255 sectors.

1C6A		LD	(SECTOR),BC

1C6E	CAT-LP	CALL	12C4,GET-M-HD2	Fetch a header.

1C71		CALL	1E53,G-RDES	Fetch record descriptor.

1C74		JR	NZ,1C6E,CAT-LP	Repeat until data is correct.

1C76		LD	A,(RECFLG)	The sector is 'free for use' when

1C79		OR	(RECLEN-hi)	bit 1 of both RECFLG and RECLEN-hi

1C7C		AND	+02	are reset (see comment after 1C43).

1C7E		JR	NZ,1C85,IN-NAME	Jump if not a 'free' sector.

1C80		CALL	12FE,RES-B-MAP	Reset map bit if it is a 'free'

				sector.

1C83		JR	1CEE,F-N-SCT	Continue with next sector.

If the current sector is not 'free', then the name of the file held in it is to be collected and inserted in alphabetical order into the data buffer of the "m" channel. Names starting with CHR$ 0 are refused.

1C85	IN-NAME	LD	A,(RECNAM)	Fetch first character of file name.

1C88		OR	A	Continue with next sector if this is

1C89		JR	Z,1CEE,F-N-SCT	CHR$ 0.

1C8B		PUSH	IX	Make HL point to the data buffer.

1C8D		POP	HL

1C8E		LD	DE,+0052

1C91		ADD	HL,DE

1C92		LD	DE,+000A	Length of filename.

1C95		LD	B,+00	B is initiallly cleared.

1C97		LD	C,(CHREC)	Start with 'file count' cleared.

The following loop tests to make sure that the name of the current record is not already stored in the buffer.

1C9A	SE-NAME	LD	A,C	Jump forward when all existing names

1C9B		OR	A	have been examined.

1C9C		JR	Z,1CD4,INS-NAME

1C9E		PUSH	HL	Save registers.

1C9F		PUSH	IX

1CA1		PUSH	BC

1CA2		LD	B,+0A	Counts characters in a name.

1CA4	T-NA-1	LD	A,(HL)	Fetch a character from buffer.

1CA5		CF	(RECNAM)	Compare against RECNAM.

1CA8		JR	NZ,1CAF,T-NA-2	Jump if they do not match.

1CAA		INC	HL	Point to next character,

1CAB		INC	IX

1CAD		DJNZ	1CA4,T-NA-1	Loop until all the names have been

				compared.

1CAF	T-NA-2	POP	BC	Restore registers.

1CB1		POP	IX

1CB2		POP	HL

1CB3		JR	Z,1CEE,F-N-SCT	Continue with next sector if the name

				is already stored.

1CB5		JR	NC,1CBB,ORD-NAM	Jump if the name is surely not in the

				buffer (i.e. 'lower' than the current

				one).

1CB7		ADD	HL,DE	Otherwise point to next name.

1CB8		DEC	C	Decrease number of names to be

				examined.

1CB9		JR	1C9A,SE-NAME	Loop back.

The address at which the name is to be inserted has been calculated; the following names are moved down to create the space for storing the new name.

1CBB	ORD-NAM	PUSH	HL	Save registers.

1CBC		PUSH	DE

1CBD		PUSH	BC

1CBE		PUSH	HL

1CBF		SLA	C	Multiply by two the number of names

				to be moved down.

1CC1		LD	H,B	Move result into HL (B holds 0).

1CC2		LD	L,C

1CC3		ADD	HL,BC	Multiply this by 5, to get in HL the

1CC4		ADD	HL,BC	number of bytes to be moved down

1CC5		ADD	HL,BC	(i.e. number of names * 10).

1CC6		ADD	HL,BC

1CC7		LD	B,H	Move into BC the length of the block

1CC8		LD	C,L	to be moved.

1CC9		POP	HL	Restore address where the current

				name is to be inserted.

1CCA		DEC	HL	Make HL point to the last character

1CCB		ADD	HL,BC	of the last name.

1CCC		EX	DE,HL	Calculate into DE the address 'HL+10'.

1CCD		ADD	HL,DE

1CCE		EX	DE,HL

1CCF		LDIR		Move down the required names (leaving

				10 bytes for the current name).

1CD1		POP	BC	Restore registers.

1CD2		POP	DE

1CD3		POP	HL

1CD4	INS-NAME	PUSH	IX	Save channel start address.

1CD6		LD	B,+0A	Ten characters in a name.

1CD8	MOVE-NA	LD	A,(IX+RECNAM)	Fetch a character from the name.

1CDB		LD	(HL),A	Store in the buffer.

1CDC		INC	IX	Point to next location.

1CDE		INC	HL

1CDF		DJNZ	1CB8,MOVE-NA	Loop until the whole name has been

				transferred.

1CE1		POP	IX	Restore channel start address.

1CE3		LD	A,(CHREC)	Fetch number of names in the buffer.

1CE6		INC	A	Include current name in the count.

1CE7		LD	(CHREC),A	Store new number.

1CEA		CP	+32	Jump if 50 names have been collected

1CEC		JR	Z,1CF4,BF-FILLED

1CEE	F-N-SCT	CALL	1312,BEC-SECT	Decrease SECTOR.

1CF1		JP	NZ,1C6E,CAT-LP	Repeat for all 255 sectors.

Now the file names are in the data buffer. CHREC holds the number of names stored. First the cartridge name is printed onto the selected stream.

1CF4	BF-FILLED	PUSH	IX	Save channel base address.

1CF6		XOR	A	Switch off drive motor.

1CF7		CALL	17F7,SEL-DRIVE

1CFA		PUSH	IX	Make HL point to HDNAME.

1CFC		POP	HL

1CFD		LD	DE,+002C

1D00		ADD	HL,DE

1D01		CALL	1D50,PRNAME	Print cartridge name.

1D04		LD	A,+0D	Print a carriage return.

1D06		CALL	1D66,PRCHAR

1D09		PUSH	IX	Make HL point to the data buffer.

1D0B		POP	HL

1D0C		LD	DE,+0052

1D0F		ADD	HL,DE

1D11		LD	B,(CHREC)	Fetch number of stored names.

1D13		LD	A,B	Jump forward if no names have been

1D14		OR	A	stored.

1D15		JR	Z,1D1C,NONAMES

1D17	OT-NAMS	CALL	1D53,PRNAME	Print all filenames.

1D1A		DJNZ	1D17,OT-NAMS

1D1C	NONAMES	CALL	1D38,FREESECT	Calculate number of 'free' sectors

1D1F		LD	A,E	into A.

1D20		SRL	A	Divide by two, giving the kilobytes

				left.

1D22		RST	10,CALBAS	Call STACK-A to store this value on

1D23		DEFW	+2D28	the calculator stack.

1D25		LD	A,+0D	Print a carriage return.

1D27		CALL	1D66,PRCHAR

1D2A		RST	10,CALBAS	Call PRINT-FP to print the number of

1D2B		DEFW	+2DE3	kilobytes left.

1D2D		LD	A,+0D	Print the final carriage return.

1D2F		CALL	1D66,PRCHAR

1D32		POP	IX	Restore channel start address.

1D34		CALL	10C4,DEL-M-BUF	Reclaim the channel.

1D37		RET		Finished.

THE 'FREESECT' SUBROUTINE

This subroutine is called to calculate the number of 'free sectors' (I...> bits reset in the map). The number is returned in the I register.

1D38	FREESECT	LD	L,(CHMAP-lo)	Fetch address of map.

1D3B		LD	H,(CHMAP-hi)

1D3E		LD	E,+00	Start with E cleared.

1D40		LD	C,+20	Length of map.

1D42	FR-SC-LP	LD	A,(HL)	Fetch a byte from the map.

1D43		INC	HL	Advance the pointer.

1D44		LD	B,+08	Loop for 8 bits.

1D46	FR-S-LPB	RRA		Jump if this bit is set,

1D47		JR	C,14DA,FR-S-RES

1D49		INC	E	Otherwise increment counter.

1D4A	FR-S-RES	DJNZ	1D46,FR-S-LPB	Repeat for all 8 bits.

1D4C		DEC	C	Repeat for all bytes in the map.

1D4D		JR	NZ,1D42,FR-SC-LP

1D4F		RET		Finished.

THE 'PRNAME' SUBROUTINE

This is used from the CAT command routine to print a file-name starting from the address held into the HL register.

1D50	PRNAME	PUSH	BC	Save BC register.

1D51		LD	B,+0A	Counts 10 characters.

1D53	PRNM-LP	LD	A,(HL)	Fetch a character.

1D54		CALL	1D66,PRCHAR	Print it.

1D57		INC	HL	Increment pointer.

1D58		DJNZ	1D53,PRNM-LP	Loop until the whole name has been

				printed.

1D5A		LD	A,+0D	Print a carriage return.

1D5C		CALL	1D66,PRCHAR

1D5F		PUSH	HL	Save the pointer.

lD60		RST	10,CALBAS	Call main ROM 'TEMPS' subroutine.

1D61		DEFW	+0D4D

1D63		POP	HL	Restore registers.

1D64		POP	BC

1D65		RET

THE 'PRCHAR' SUBROUTINE

The character whose code is held in the A register is sent over the currently selected stream.

1D66	PRCHAR	PUSH	IX	Save channel base address.

1D68		RST	10,CALBAS	Call restart 'PRINT-A' to print the

1D69		DEFW	+0010	character.

1D6B		POP	IX	Restore channel base address.

1D6D		RET		Finished.

THE 'ERASE' COMMAND SUBROUTINE

This is also called by using 'hook code' +24. The subroutine is entered with

D-STR1 holding the drive number and N-STR1 holding the length and the start of the filename, Note that H'L' is corrupted.

1D6E	ERASE	CALL	0FE8,SET-T-MCH	Set a temporary "m" channel.

1D71		LD	A,(CHDRIV)	Fetch drive number.

1D74		CALL	17F7,SEL-DRIVE	Turn on drive motor.

1D77		IN	A,(+EF)	Continue only if the write-nrotect

1D79		AND	+01	tab is present.

1D7B		JR	NZ,107F,ERASE-1

'Drive write protected'

1D7D		RST	20,SH-ERR	Call the error handling routine.

1D7E		DEFB	+0E

1D7F	ERASE-1	PUSH	IX	Point to the data buffer.

1D81		POP	HL

1D82		LD	DE,+0052

1D85		ADD	HL,DE

1D86		PUSH	HL	Copy this address into DE.

1D87		POP	DE

Now the first 32 locations in the data buffer are cleared. These locations act as a 'pseudo-map', used to mark the sectors to be erased,

1D88		INC	DE	Point to next location.

1D89		LD	BC,+001F	Gap length - 1.

1D8C		XOR	A	Clear the first location.

1D8D		LD	(HL),A

1D8E		LDIR		Clear all locations.

lD90		LD	A,+FF	CHREC is made holding 255.

1D92		CD	(CHREC),A

1D95		LD	BC,+04FB	SECTOR is initialised to 'five passes

1D98		LD	(SECTOR),BC	of the tape'.

The cartridge is searched for the sectors to be erased, and when any such sector is found, the relevant 'pseudo-map' bit is set. A 'normal' map is also set-up.

1D9C	ERASE-LP	CALL	1312,DEC-SECT	Decrease SECTOR.

1D9F		JR	Z,1DF8,ERASE-MK	Make the ERASE when it reaches 0.

1DA1		CALL	12C4,GET-M-HD2	Fetch a header.

1DA4		CALL	1E53,G-RDES	Fetch record descriptor.

1DA7		JR	NZ,1DDA,TST-NUM	Jump with any error.

1DA9		LD	A,(RECFLG)	Jump it this record is not 'tree'.

1DAC		OR	(RECLEN-hi)

lDAF		AND	+02

1DB1		JR	NZ,1DB8,ERASE-2

1DB3		CALL	12FE,RES-B-MAP	Otherwise reset map bit to indicate

				'free sector'.

1DB6		JR	1DDA,TST-NUM	Jump forward.

The name of the current record is compared against that of the file to be erased. If the comparison is successful, the 'pseudo-map' bit is set to mark the sector.

1DB8	ERASE-2	PUSH	IX	MAke HL point to RECNAM.

1DBA		POP	HL

1DBB		LD	DE,+0047

1DBE		ADD	HL,DE

1DBF		LD	BC,+000A	Counts ten characters in a name.

1DC2		CALL	131E,CHK-NAME	Compare against CHNAME.

1DC5		JR	NZ,1DDA,TST-NUM	Jump if it does not equal.

1DC7		CALL	1306,TEST-PMAP	Get position of pseudo-map bit.

1DCA		LD	A,B	Fetch bit position.

1DCB		OR	(HL)	Set the pseudo-map bit.

1DCC		LD	(HL),A

1DCD		BIT	1,(RECFLG)	Jump if this is not the EOF block.

1DD1		JR	Z,1DDA,TST-NUN

1DD3		LD	A,(RECNUM)	Otherwise increment record number

1DD6		INC	A	and store it into CHMREC, giving the

1DD7		LD	(CHREC),A	number of sectors that composes the	

				file.

1DDA TST-NUM	PUSH	IX	Make HL point to the 'pseudo-map'.

1DDC		POP	HL

1DDD		LD	DE,+0052

1DE0		ADD	HL,DE

1DE1		LD	E,+00	Clear E register.

1DE3		LD	C,+20	Length of the pseudo-map.

IDE5 LP-P-MAP	LD	A,(HL)	Fetch pseudo-map byte.

1DE6		INC	HL	Advance the pointer.

1DE7		LD	B,+08	Counts 8 bits.

1DE9 LP-B-MAP	RRA		Jump if this bit is reset.

1DEA		JR	NC,1DED,NOINC-C

1DEC		INC	E	Otherwise increment counter.

1DED NOINC-C	DJNZ	1DE9,LP-B-MAP	Loop for all 8 bits.

1DEF		DEC	C	Decrement map length.

1DF0		JR	NZ,1DE5,LP-P-MAP	Loop until the whole map has been

				examined.

1DF2		LD	A,(CHREC)	Fetch number of records that composes

				the file.

1DF5		CP	E	Compare with number of records found.

1DF6		JR	NZ,1D9C,ERASE-LP	Continue until all records have been

				found (or five passes of the tape

				have been made).

A 'free' sector descriptor is written in all records of the file to be erased.

1DF8	ERASE-MK	CALL	1E3E,IN-CHK		Set 'free record' attributes.

1DFB	ERASE-MK2	CALL	12C4,GET-M-HD2		Fetch a header.

1DFE		CALL	1306,TEST-PMAP		Jump if this is not the header of a

1E01		JR	Z,1E26,T-OTHER	record to be erased.

1E03		PUSH	HL		Save map bit address and position.

1E04		PUSH	BC

1E05		LD	A,+E6	Start writing.

1E07		OUT	(+EF),A

1E09		LD	BC,0168	Wait to insert part of the first gap.

1E0C		CALL	18FA,DELAY-BC

1E0F		PUSH	IX	Make HL point to the data block

1E11		POP	HL	preamble.

1E12		LD	DE,+0037

1E15		ADD	HL,DE

1E16		CALL	1878,OUT-M-BUF		Write the 'free record' descriptor.

1E19		LD	A,+EE	Stop writing.

1E1B		OUT	(+EF),A

1E1D		CALL	12FE,RES-B-MAP		Reset map bit.

1E20		POP	BC	Restore pseudo-map bit position and

1E21		POP	HL	address.

1E22		LD	A,B	Reset the appropriate bit.

1E23		CPL

1E24		AND	(HL)

1E25		LD	(HL),A

If the pseudo-map contains at least one bit set, there are other records to be erased.

1E26	T-OTHER	PUSH	IX	Make HL point to the pseudo-map.

1E28		POP	HL

1E29		LD	DE,+0052

1E2C		ADD	HL,DE

1E2D		LD	B,+20	Length of pseudo-map.

1E2F	CHK-W-MAP	LD 	A,(HL) 	Fetch a byte.

1E30		OR	A	Jump back if the byte is not zero

1E31		JR 	NZ,1DFB,ERASE-MK2 	(i.e. there are other records to be

				erased).

1E33		INC	HL	Next location.

1E34		DJNZ	1E2F,CHK-W-MAP	Loop for the whole map.

1E36		XOR	A	Switch off drive motor.

1E37		CALL	17F7,SEL-DRIVE

1E3A		CALL	10C4,DEL-M-BUF	Reclaim channel and map.

1E3D		RET		Finished.

THE 'SIGNAL "FREE SECTOR"' SUBROUTINE

This subroutine is called from the FORMAT and ERASE command routines to mark the current record descriptor as 'free sector' identifier.

1E3E	IN-CHK	XOR	A	Clear RECFLG and RECLEN.

1E3F		LD	(RECFLG),A

1E42		LD	(RECLEN-lo),A

1E45		LD	(RECLEN-hi),A

1E48		PUSH	IX	Make HL point to RECFLG.

1E4A		POP	HL

1E4B		LD	DE,+0043

1E4E		ADD	HL,DE

1E4F		CALL	1341,CMKS-HD-R	Restore DESCHK checksum.

1E52		RET		Finished.

THE 'OBTAIN A RECORD DESCRIPTOR' SUBROUTINE

This subroutine is used from the FORMAT and ERASE coamnand routines to fetch from the current Microdrive unit the record descriptor held in the current sector (i.e. RECFLG...DESCHK). The zero flag is returned reset with any error.

1E53	G-RDES	PUSH	IX	Make HL point to RECFLG.

1E55		POP	HL

1E56		LD	DE,+0043

1E59		ADD	HL,DE

1E5A		CALL	18A3,GET-M-HD	Fetch record descriptor.

1E5D		CALL	1341,CHKS-MD-R	Calculate new checksum.

1E60		RET	NZ	Return if it is wrong.

1E61		BIT	0,(RECFLG)	Return with zero flag reset if this

1E65		RET		is a header.

THE 'CALLS TO THE COMMAND ROUTINES'

The six following calls are entered from the appropriate command syntax routine; on return from the command routine, the control returns to END1.

1E66	ERASE-RUN	CALL	1D6E,ERASE

1E69		JR	1E84,ENDC

1E6B	MOVE-RUN	CALL	13F1,MOVE

1E6E		JR	1E84,ENDC

1E70	CAT-RUN	CALL	1C58,CAT

1E73		JR	1E84,ENDC

1E75	FOR-RUN	CALL	1B6E,FORMAT

1E78		JR	1E84,ENDC

1E7A	OP-RUN	CALL	1AF0,OP-M-STRM

1E7D		JR	1E84,ENDC

1E7F	SAVE-RUN	CALL	14DA,SA-DRIVE

1E82		JR	1E84,ENDC

1E84	ENDC	JP	05Cl,END1

The 'not used' routines

The following are four subroutines that are never called from the shadow ROM code; these routines are however described below as they may be useful to the programmer.

THE 'DISP-HEX' SUBROUTINE

The contents of the A register are displayed on the screen in hexadecimal. All registers are preserved, excluding A.

1E87	DISP-HEX	PUSH	AF	Save A register.

1E88		RRA		Shift left nibble to right.

1E89		RRA

1E8A		RRA

1E8B		RRA

1E8C		CALL	1E90,DISP-NIB	Print the first digit.

1E8F		POP	AF	Restore value.

1E90	DISP-NIB	AND	+0F	Clear left nibble.

1E92		CP	+0A	Jump if the value is lower than 9.

1E94		JR	C,1E98,CONV-1

1E96		ADD	A,+07	Otherwise add +07 to reach the code of

				A..F.

1E98	CONV-1	ADD	A,+30	Add offset for ASCII code.

1E9A		CALL	1EA9,DISP-CH	Print the digit.

1E9D		RET		Finished.

THE 'DISP-HEX2' SUBROUTINE

This performs the same task as the preceding one, but the hex number is followed by a space. All registers are preserved.

1E9E	DISP-HEX2	PUSH	AF	Save A register.

1E9F		CALL	1E87,DISP-HEX	Print the hex number.

1EA2		LD	A,+20	Follow with a space.

1EA4		CALL	1EA9,DISP-CH

1EA7		POP	AF	Restore A.

1EA8		RET		Finished.

THE 'DISP-CH' SUBROUTINE

This subroutine prints on the screen the character held in the accumulator. All registers are preserved.

1EA9	DISP-CH	PUSH	HL	Save registers.

1EAA		PUSH	DE

1EAB		PUSH	BC

1EAC		PUSH	AF

1EAD		EXX		Save alternate registers.

1EAE		PUSH	HL

1EAF		PUSH	DE

1EB0		PUSH	BC

1EB1		PUSH	AF

1EB2		LD	HL,(CURCHL)	Save also current channel address.

1EB5		PUSH	HL

1EB6		PUSH	AF	Save character to be printed.

1EB7		LD	A,+02	Select stream 2 (screen).

1EB9		RST	10,CALBAS	Call CHAN-OPEN to select the stream.

1EBA		DEFW	+1601

1EBC		POP	AF	Restore character.

1EBD		RST	10,CALBAS	Call PRINT-A restart to print the

1EBE		DEFW	+0010	character.

1EC0		POP	HL	Restore old channel address.

1EC1		LD	(CURCHL),A

1EC4		POP	AF	Restore alternate registers.

1EC5		POP	BC

1EC6		POP	DE

1EC7		POP	HL

1EC8		EXX		Restore normal registers.

1EC9		POP	AF

1ECA		POP	BC

1ECB		POP	DE

1ECC		POP	HL

1ECD		RET

THE 'HEX-LINE' SUBROUTINE

This subroutine displays the values of the ten bytes from the location passed in the HL register. Again all registers are preserved.

1ECE	HEX-LINE	PUSH	HL	Save registers.

1ECF		PUSH	BC

1ED0		PUSH	AF

1ED1		LD	B,+0A	Counts 10 bytes.

1ED3	HEX-LINE2	LD	A,(HL)	Fetch a byte.

1ED4		CALL	1E9E,DISP-HEX2	Display it in hex and follow with a

				space.

1ED7		INC	HL	Point to next byte.

1ED8		DJNZ	1ED3,HEX-LINE2	Loop for all l0 bytes.

1EDA		LD	A,+0D	Finally print a carriage return.

1EDC		CALL	1EA9,DISP-CH

1EDF		POP	AF	Restore registers.

1EE0		POP	BC

1EEl		POP	HL

1EE2		RET		Finished.

1EE3...1FFF	Unused locations (all set to +FF).

�APPENDIX 1

Labels sorted by address value

(For edition 1 Shadow ROM)

0000	MAIN-ROM	0008	ST-SHADOW	0010	CALBAS	0018	CHKSYNTAX

0020	SH-ERR	0028	ROMERR	0030	NEWVARS	0038	INT-SERV

003A	TEST-SP	0040	RMERR-2	0066	NMINT-SRV	0068	ST-ERROR

0077	CHECK-SP	0081	CALBAS-2	009A	START-2	00A5	START-3

00BC	START-4	00E7	NREPORT-0	00E9	TEST-CODE	00FB	COPYCHADD

011B	RUNTIME	0130	PROG-LINE	0133	SC-L-LOOP	0139	NREPORT-1

013B	TEST-LOW	0144	LINE-LEN	014E	SKIP-NUN	0152	EACH-ST

015D	CHKEND	0165	CHKEVEN	0169	CHKEND-L	016F	S-STAT

0182	RCLM-NUM	01A3	NXT-1	01A5	NEXTNUM	01AA	CL-WORK

01EC	ERR-V	01F0	ERR-6	01F7	CRT-VARS	0224	DEFAULT

0235	VAR-EXIST	024D	RES-VARS	0252	EACH-VAR	0258	REP-MSG

026E	FETCH-ERR	029F	PR-REP-LP	02AC	END-PR-MS	0486	CAT-SYN

0494	MISSING-D	04A6	CAT-SCRN	04B2	OREPORT-1	04B4	FRTM-SYN

04BF	NO-FOR-M	04CD	FOR-B-T	04D3	NOT-FOR-B	04E7	FOR-M

04ED	OPEN-SYN	0500	NOT-OP-M	051C	OPEN-RS	051F	NOT-OP-B

0529	OP-M-C	052F	NREPORT-C	0531	ERASE-SYN	053D	MOVE-SYN

0559	CLS#-SYN	057F	CLR#-SYN	0584	NONSENSE	058E	ALL-STRMS

059F	EX-D-STR	05A7	ALL-BYTES	05B1	SEPARATOR	05B7	ST-END

05BF	TEST-RET	05C1	END1	05DD	RETAD-RUN	05E0	RETAD-SYN

05E2	BREAK-PGM	05E7	EXPT-STR	05F2	EXPT-SPEC	05F5	EXP-SPEC2

060C	TEST-NEXT	061E	EXPT-NUM	062D	NREPORT-3	062F	EXPT-NAME

064C	NREPORT-4	064E	EXPT-STRM	0663	NREPORT-2	0665	CHECK-H

066D	CHECK-M-2	0681	NREPORT-5	0683	NREPORT-9	0685	TEST-MNAM

068F	TEST-STAT	06A1	NREPORT-8	06A3	EXPT-EXPR	06B0	TEST-BAUD

06B9	EXPT-EXP1	06CC	ENDHERE	0700	UNPAGE	0701	EXPT-PRMS

0716	NO-NAME	0722	NOT-NET	073C	OREP-1-2	073E	LINE

0750	END-EXPT	0753	PROC	0771	SCREEN$	0789	CODE

079A	DEFLT-0	079F	PAR-1	07A7	TEST-SAVE	07B2	PAR-2

07B8	END-CODE	07D2	DATA	07DA	NO-M-ARR	07F2	EXISTING

07F4	NONS-BSC	07F6	G-TYPE	0803	VR-DATA	080E	LD-DATA

0819	NUM-ARR	081C	END-DATA	082F	SAVE-SYN	0849	SAVE-M

084F	SA-HEADER	0854	HD-LOOP	086E	SA-BLOCK	0872	SA-BLK-LP

087D	S-BLK-END	0880	SA-BYTE	088E	SA-NET	0891	SA-B-END

0894	LOAD-SYN	089E	VERIF-SYN	08A8	MRG-SYN	08AF	LD-VF-MR

08CD	TS-L-NET	08D3	TS-L-RS	08D8	LD-HEADER	08E0	LD-HD-NET

08E7	LD-HD-RS	08EC	LD-HDR-2	08F2	TEST-TYPE	0902	NREPORT-H

0904	TST-MERGE	0911	T-M-CODE	0919	LD-BLOCK	0930	NREPORT-L

0932	LD-BLK-2	0941	LD-BLK-3	0952	LD-BLK-4	0959	LD-BLK-5

0962	LD-NO-PGM	0967	MERGE-BLK	0973	NO-AUTOST	0988	TST-MR-M

0994	TST-MR-N	09A0	MERGE-END	09A3	LD-PR-AR	09B5	LD-PROG

09BE	TST-SPACE	09C7	TST-TYPE	09DE	T-LD-NET	09E8	RCLM-OLD

09F3	CRT-NEW	0A0F	END-LD-PR	0A15	SET-PROG	0A4E	NO-AUTO

0A5C	LV-ANY	0A6A	LV-BN	0A72	LV-N	0A79	LV-B

0A7E	LV-BN-E	0A8A	VR-BN	0A8F	LVBN-END	0A95	LOAD-RUN

0AC9	SET-BAUD	0AD0	NXT-ENTRY	0AE4	END-SET	0813	OP-RS-CH

0B47	OP-RSCHAN	0B4A	OP-STREAM	0B6F	T-INPUT	0B75	B-INPUT

0B7B	TCHAN-IN	0B81	BCHAN-IN	0B8E	REC-BYTE	0B9A	REC-PROC

0BB1	READ-RS	0BC5	TST-AGAIN	0BD1	START-BIT	0BD8	SERIAL-IN

0BDA	BD-DELAY	0BF0	WAIT-1	0BF1	WAIT-2	0BF9	T-FURTHER

0C1D	SER-IN-2	0C1F	BD-DELAY2	0C36	END-RS-IN	0C3C	TCHAN-OUT

0C46	NOT-TOKEN	0C4C	NOT-GRAPH	0C57	NOT-CR	0C5A	BCHAN-OUT

0C6F	BD-DEL-1	0C74	TEST-DTR	0C88	SER-OUT-L	0C8E	BD-DEL-2

0CA4	BD-DEL-3	0CA9	BORD-REST	0CB4	BRK-INOUT	0CBD	CALL-INP

0CDB	IN-AGAIN	0CE1	INPUT-END	0CE5	OREPORT-8	0CEA	NO-READ

0CED	ACC-CODE	0CF7	END-INPUT	0CFB	INKEY$	0D01	INK$-END

0D0C	N-INPUT	0D12	NCHAN-IN	0D1E	TEST-BUFF	0D38	TST-N-EOF

0D3F	GET-N-BUF	0D45	TRY-AGAIN	0D5F	TIME-OUT	0D6C	NCHAN-OUT

0D7A	TEST-OUT	0D88	ST-BF-LEN	0D93	OUT-BLK-N	0DAB	S-PACK-1

0DB2	SEND-PACK	0DC5	CHKS1	0DD4	CHKS2	0DDA	SENDSCOUT

0DF6	SP-DL-1	0DFD	INC-BLKN	0E05	SP-N-END	0E0F	BR-DELAY

0E12	DL-LOOP	0E18	GET-NBLK	0E27	CHKS3	0E40	BRCAST

0E45	TEST-BLKN	0E62	GETNB-END	0E65	GET-NBUFF	0E87	CHKS4

0E93	STORE-LEN	0EA1	GETNBF-END	0EA3	OPEN-N-ST	0EA9	OP-TEMP-N

0EB5	OP-PERN-N	0EF5	SEND-NEOF	0F03	NET-STATE	0F0E	CHK-REST

0F15	MAKESURE	0F1E	WT-SCOUT	0F21	CLAIMED	0F35	WT-SYNC

0F4D	E-READ-N	0F56	SCOUT-END	0F58	LP-SCOUT	0F5D	DELAY-SC

0F61	SEND-SC	0F72	ALL-BITS	0F7D	S-SC-DEL	0F8F	END-S-DEL

0F92	INPAK	0F94	N-ACTIVE	0F9D	INPAK-2	0F9E	INPAK-L

0FAE	UNTIL-MK	0FBE	SEND-RESP	0FC5	OUTPAK	0FCA	DEL-D-1

0FCC	OUTPAK-L	0FD2	UNT-MARK	0FE8	SET-T-MCH	0FF6	CHK-LOOP

102A	NEXT-CHAN	1034	CHAN-SPC	1061	T-CH-NAME	106F	TEST-MAP

108A	ST-MAP-AD	1094	FILL-MAP	10C4	DEL-M-BUF	10F5	TEST-MCHL

110A	NXTCHAN	1114	RCLM-MAP	1122	M-INPUT	112C	MCHAN-IN

1132	RWF-ERR	1134	TEST-M-BF	1158	CHK-M-EOF	1162	NEW-BUFF

1177	GET-RECD	117D	GET-R-2	1184	GET-R-LP	119E	NXT-SCT

11A3	RS-SH2	11A5	G-HD-RC	11D6	G-REC-ERR	11D8	MCHAN-OUT

11E6	NOREAD	11FF	WR-RECD	120D	WRITE-PRC	121B	NOFULL

121F	CP-NAME	1264	CHK-FULL	126C	NXT-B-MAP	1275	SEND-BLK

127D	FAILED	128F	NO-PRT	12A6	CLOSE-M	12A9	CLOSE-M2

12B6	NOEMP	12BE	ERR-RS	12C4	GET-M-HD2	12DA	CHK-MAP-2

12DF	CHECK-MAP	12E2	ENTRY	12E8	ENTRY-2	12F8	ROTATE

12FE	RES-B-MAP	1306	TEST-PMAP	1312	DEC-SECT	131E	CHK-NAME

1322	ALL-CHARS	1333	ALLCHR-2	133E	CHKNAM-END	1341	CHKS-HD-R

1346	CHKS-BUFF	1349	CHKS-ALL	134C	NXT-BYTE	1354	STCHK

135F	REST-STRM	1365	NXT-STRM	1377	NOTRIGHT	137E	STO-DISP

1384	UPD-POINT	1391	REST-MAP	139D	LCHAN	13C1	LPEND

13F1	MOVE	1414	M-AGAIN	141A	I-AGAIN	1423	MOVE-OUT

142E	MOVE-EOF	1455	OP-STRM	1466	OP-CHAN	147F	CHECK-N

148B	CHECK-R	1495	USE-R	14A4	CL-CHAN	14B8	CL-CHK-N

14C7	EX-DSTR2	14CF	ALL-BYT-2	14DA	SA-DRIVE	14E8	START-SA

14FC	NEW-NAME	1530	SA-DRI-2	1538	SA-DRI-3	1552	SA-DRI-WR

155E	SA-DRI-4	1579	END-SA-DR	1580	F-M-HEAD	1591	F-HD-2

1599	F-HD-3	15A9	LV-MCH	15DF	USE-REC	15F9	LOOK-MAP

1613	SA-MAP	1620	SA-MAP-LP	162D	RE-MAP	163D	RE-MAP-LP

1648	LD-VE-M	1658	VE-M-E	1664	VE-FAIL	1666	F-REC1

166C	F-REC2	1673	UNTILFIVE	168A	F-ERROR	1691	REST-N-AD

16AC	TST-PLACE	1708	CLOSE-CH	1718	CLOSE	1751	CL-RS-CH

175E	CL-N-CH	176D	CL-M-CN	177F	RCLM-CH	1789	UPD-STRM

17A4	UPD-NXT-S	17B9	RCL-T-CH	17C2	EX-CHANS	17D2	CHK-TEMPM

17DE	CHK-TEMPN	17ED	PT-N-CHAN	17F7	SEL-DRIVE	1802	TURN-ON

1809	TON-DELAY	1811	REPTEST	1813	CHK-PRES	1820	NOPRES

182A	SW-MOTOR	1835	ALL-MOTRS	184B	OFF-MOTOR	185C	NXT-MOTOR

1867	DEL-S-1	1872	OUT-M-HD	1878	OUT-M-BUF	187C	OUT-M-BLK

1884	NOT-PROT	1895	OUT-M-BYT	18A3	GET-M-HD	18A9	GET-M-BUF

18AD	GET-M-BLK	18B1	CHK-AGAIN	18B3	CHKLOOP	18BE	CHK-AG-2

18C0	CHK-LP-2	18D2	DR-READY	18DE	IN-M-BLK	18E9	TEST-ERR

1BFA	DELAY-BC	18FB	DELAY-BC1	1902	UNKN-1	191C	UNKN-2

1929	UNKN-3	1952	UNKN-4	1959	UNKN-5	1961	UNKN-6

1968	UNKN-7	196C	UNKN-8	1976	UNKN-9	1981	HOOK-CODE

1987	CLR-ERR	19A4	HOOK-32	19A8	HOOK-31	19D9	CONS-IN

19DE	WTKEY	19EC	CONS-OUT	19EF	OUT-CODE	19FC	PRT-OUT

1A01	KBD-TEST	1A09	READ-SEQ	1A14	INCREC	1A17	RD-RANDOM

1A24	CLOSE-NET	1A31	GET-PACK	1A46	GP-ERROR	1A4B	RD-SECTOR

1A51	NO-GOOD	1A63	USE-C-RC	1A81	DEL-B-CT	1A86	RD-NEXT

1A91	WR-SECTOR	1AAD	WR-S-1	1ABF	WR-S-2	1AC5	RS-SH

1AC7	WR-S-3	1AE0	CLR-BUFF	1AF0	OP-M-STRM	1B0D	MAKE-PERM

1B23	STORE-DSP	1B29	OP-TEMP-M	1B3A	OP-F-1	1B57	OP-F-2

1B5C	OP-F-3	1B5F	OP-F-4	1B6C	OP-F-5	1B6E	FORMAT

1B86	FORMAT-1	1BBD	FILL-B-F	1BC1	FILL-B-F2	1BD6	WR-F-TEST

1C0A	TEST-SCT	1C1B	CHK-SCT	1C3E	CHK-NSECT	1C46	MARK-FREE

1C53	MK-BLK	1C58	CAT	1C6E	CAT-LP	1C85	IN-NAME

1C9A	SE-NAME	1CA4	T-NA-1	1CAF	T-NA-2	1CBB	ORD-NAM

1CD4	INS-NAME	1CD8	MOVE-NA	1CEE	F-N-SCT	1CF4	BF-FILLED

1D17	OT-NAMS	1D1C	NONAMES	1D38	FREESECT	1D42	FR-SC-LP

1D46	FR-S-LPB	1D4A	FR-S-RES	1D50	PRNAME	1D53	PRNM-LP

1D66	PRCHAR	1D6E	ERASE	1D7F	ERASE-1	1D9C	ERASE-LP

1DB8	ERASE-2	1DDA	TST-NUM	1DE5	LP-P-MAP	1DE9	LP-B-MAP

1DED	NOINC-C	1DF8	ERASE-MK	1DFB	ERASE-MK2	1E26	T-OTHER

1E2F	CHK-W-MAP	1E3E	IN-CHK	1E53	G-RDES	1E66	ERASE-RUN

1E6B	MOVE-RUN	1E70	CAT-RUN	1E75	FOR-RUN	1E7A	OP-RUN

1E7F	SAVE-RUN	1E84	ENDC	1E87	DISP-HEX	1E90	DISP-NIB

1E98	CONV-1	1E9E	DISP-HEX2	1EA9	DISP-CH	1ECE	HEX-LINE

1ED3	HEX-LINE2

�APPENDIX 2

Labels sorted alphabetically

(For edition 1 Shadow ROM)

ACC-CODE	0CED	ALL-BITS	0F72	ALL-BYT-2	14CF	ALL-BYTES	05A7

ALL-CHARS	1322	ALL-MOTRS	1835	ALL-STRMS	058E	ALLCHR-2	1333

B-INPUT	0B75	BCHAN-IN	0B81	BCHAN-OUT	0C5A	BD-DEL-1	0C6F

BD-DEL-2	0C8E	BD-DEL-3	0CA4	BD-DELAY	0BDA	BD-DELAY2	0C1F

BF-FILLED	1CF4	BORD-REST	0CA9	BR-DELAY	0E0F	BRCAST	0E40

BREAK-PGM	05E2	BRK-INOUT	0CB4	CALBAS	0010	CALBAS-2	0081

CALL-INP	0CBD	CAT	1C58	CAT-LP	1C6E	CAT-RUN	1E70

CAT-SCRN	04A6	CAT-SYN	0486	CHAN-SPC	1034	CHECK-H	0665

CHECK-M-2	066D	CHECK-MAP	12DF	CHECK-N	147F	CHECK-R	148B

CHECK-SP	0077	CHK-AG-2	18BE	CHK-AGAIN	18B1	CHK-FULL	1264

CHK-LOOP	0FF6	CHK-LP-2	18C0	CHK-M-EOF	1158	CHK-MAP-2	12DA

CHK-NAME	131E	CHK-NSECT	1C3E	CHK-PRES	1813	CHK-REST	0F0E

CHK-SCT	1C1B	CHK-TEMPM	17D2	CHK-TEMPN	17DE	CHK-W-MAP	1E2F

CHKEND	015D	CHKEND-L	0169	CHKEVEN	0165	CHKLOOP	18B3

CHKNAM-END	133E	CHKS-ALL	1349	CHKS-BUFF	1346	CHKS-HD-R	1341

CHKS1	0DC5	CHKS2	0DD4	CHKS3	0E27	CHKS4	0E87

CHKSYNTAX	0018	CL-CHAN	14A4	CL-CHK-N	14B8	CL-M-CN	176D

CL-N-CH	175E	CL-RS-CH	1751	CL-WORK	01AA	CLAIMED	0F21

CLOSE	1718	CLOSE-CH	1708	CLOSE-M	12A6	CLOSE-M2	12A9

CLOSE-NET	1A24	CLR#-SYN	057F	CLR-BUFF	1AE0	CLR-ERR	1987

CLS#-SYN	0559	CODE	0789	CONS-IN	19D9	CONS-OUT	19EC

CONV-1	1E98	COPYCHADD	00FB	CP-NAME	121F	CRT-NEW	09F3

CRT-VARS	01F7	DATA	07D2	DEC-SECT	1312	DEFAULT	0224

DEFLT-0	079A	DEL-B-CT	1A81	DEL-D-1	0FCA	DEL-M-BUF	10C4

DEL-S-1	1867	DELAY-BC	1BFA	DELAY-BC1	18FB	DELAY-SC	0F5D

DISP-CH	1EA9	DISP-HEX	1E87	DISP-HEX2	1E9E	DISP-NIB	1E90

DL-LOOP	0E12	DR-READY	18D2	E-READ-N	0F4D	EACH-ST	0152

EACH-VAR	0252	END-CODE	07B8	END-DATA	081C	END-EXPT	0750

END-INPUT	0CF7	END-LD-PR	0A0F	END-PR-MS	02AC	END-RS-IN	0C36

END-S-DEL	0F8F	END-SA-DR	1579	END-SET	0AE4	END1	05C1

ENDC	1E84	ENDHERE	06CC	ENTRY	12E2	ENTRY-2	12E8

ERASE	1D6E	ERASE-1	1D7F	ERASE-2	1DB8	ERASE-LP	1D9C

ERASE-MK	1DF8	ERASE-MK2	1DFB	ERASE-RUN	1E66	ERASE-SYN	0531

ERR-6	01F0	ERR-RS	12BE	ERR-V	01EC	EX-CHANS	17C2

EX-D-STR	059F	EX-DSTR2	14C7	EXISTING	07F2	EXP-SPEC2	05F5

EXPT-EXP1	06B9	EXPT-EXPR	06A3	EXPT-NAME	062F	EXPT-NUM	061E

EXPT-PRMS	0701	EXPT-SPEC	05F2	EXPT-STR	05E7	EXPT-STRM	064E

F-ERROR	168A	F-HD-2	1591	F-HD-3	1599	F-M-HEAD	1580

F-N-SCT	1CEE	F-REC1	1666	F-REC2	166C	FAILED	127D

FETCH-ERR	026E	FILL-B-F	1BBD	FILL-B-F2	1BC1	FILL-MAP	1094

FOR-B-T	04CD	FOR-M	04E7	FOR-RUN	1E75	FORMAT	1B6E

FORMAT-1	1B86	FR-S-LPB	1D46	FR-S-RES	1D4A	FR-SC-LP	1D42

FREESECT	1D38	FRTM-SYN	04B4	G-HD-RC	11A5	G-RDES	1E53

G-REC-ERR	11D6	G-TYPE	07F6	GET-M-BLK	18AD	GET-M-BUF	18A9

GET-M-HD	18A3	GET-M-HD2	12C4	GET-N-BUF	0D3F	GET-NBLK	0E18

GET-NBUFF	0E65	GET-PACK	1A31	GET-R-2	117D	GET-R-LP	1184

GET-RECD	1177	GETNB-END	0E62	GETNBF-END	0EA1	GP-ERROR	1A46

HD-LOOP	0854	HEX-LINE	1ECE	HEX-LINE2	1ED3	HOOK-31	19A8

HOOK-32	19A4	HOOK-CODE	1981	I-AGAIN	141A	IN-AGAIN	0CDB

IN-CHK	1E3E	IN-M-BLK	18DE	IN-NAME	1C85	INC-BLKN	0DFD

INCREC	1A14	INK$-END	0D01	INKEY$	0CFB	INPAK	0F92

INPAK-2	0F9D	INPAK-L	0F9E	INPUT-END	0CE1	INS-NAME	1CD4

INT-SERV	0038	KBD-TEST	1A01	LCHAN	139D	LD-BLK-2	0932

LD-BLK-3	0941	LD-BLK-4	0952	LD-BLK-5	0959	LD-BLOCK	0919

LD-DATA	080E	LD-HD-NET	08E0	LD-HD-RS	08E7	LD-HDR-2	08EC

LD-HEADER	08D8	LD-NO-PGM	0962	LD-PR-AR	09A3	LD-PROG	09B5

LD-VE-M	1648	LD-VF-MR	08AF	LINE	073E	LINE-LEN	0144

LOAD-RUN	0A95	LOAD-SYN	0894	LOOK-MAP	15F9	LP-B-MAP	1DE9

LP-P-MAP	1DE5	LP-SCOUT	0F58	LPEND	13C1	LV-ANY	0A5C

LV-B	0A79	LV-BN	0A6A	LV-BN-E	0A7E	LV-MCH	15A9

LV-N	0A72	LVBN-END	0A8F	M-AGAIN	1414	M-INPUT	1122

MAIN-ROM	0000	MAKE-PERM	1B0D	MAKESURE	0F15	MARK-FREE	1C46

MCHAN-IN	112C	MCHAN-OUT	11D8	MERGE-BLK	0967	MERGE-END	09A0

MISSING-D	0494	MK-BLK	1C53	MOVE	13F1	MOVE-EOF	142E

MOVE-NA	1CD8	MOVE-OUT	1423	MOVE-RUN	1E6B	MOVE-SYN	053D

MRG-SYN	08A8	N-ACTIVE	0F94	N-INPUT	0D0C	NCHAN-IN	0D12

NCHAN-OUT	0D6C	NET-STATE	0F03	NEW-BUFF	1162	NEW-NAME	14FC

NEWVARS	0030	NEXT-CHAN	102A	NEXTNUM	01A5	NMINT-SRV	0066

NO-AUTO	0A4E	NO-AUTOST	0973	NO-FOR-M	04BF	NO-GOOD	1A51

NO-M-ARR	07DA	NO-NAME	0716	NO-PRT	128F	NO-READ	0CEA

NOEMP	12B6	NOFULL	121B	NOINC-C	1DED	NONAMES	1D1C

NONS-BSC	07F4	NONSENSE	0584	NOPRES	1820	NOREAD	11E6

NOT-CR	0C57	NOT-FOR-B	04D3	NOT-GRAPH	0C4C	NOT-NET	0722

NOT-OP-B	051F	NOT-OP-M	0500	NOT-PROT	1884	NOT-TOKEN	0C46

NOTRIGHT	1377	NREPORT-0	00E7	NREPORT-1	0139	NREPORT-2	0663

NREPORT-3	062D	NREPORT-4	064C	NREPORT-5	0681	NREPORT-8	06A1

NREPORT-9	0683	NREPORT-C	052F	NREPORT-H	0902	NREPORT-L	0930

NUM-ARR	0819	NXT-1	01A3	NXT-B-MAP	126C	NXT-BYTE	134C

NXT-ENTRY	0AD0	NXT-MOTOR	185C	NXT-SCT	119E	NXT-STRM	1365

NXTCHAN	110A	OFF-MOTOR	184B	OP-CHAM	1466	OP-F-1	1B3A

OP-F-2	1B57	OP-F-3	1B5C	OP-F-4	1B5F	OP-F-5	1B6C

OP-M-C	0529	OP-M-STRM	1AF0	OP-PERN-N	0EB5	OP-RS-CH	0813

OP-RSCHAN	0B47	OP-RUN	1E7A	OP-STREAM	0B4A	OP-STRM	1455

OP-TEMP-M	1B29	OP-TEMP-N	0EA9	OPEN-N-ST	0EA3	OPEN-RS	051C

OPEN-SYN	04ED	ORD-NAM	1CBB	OREP-1-2	073C	OREPORT-1	04B2

OREPORT-8	0CE5	OT-NAMS	1D17	OUT-BLK-N	0D93	OUT-CODE	19EF

OUT-M-BLK	187C	OUT-M-BUF	1878	OUT-M-BYT	1895	OUT-M-HD	1872

OUTPAK	0FC5	OUTPAK-L	0FCC	PAR-1	079F	PAR-2	07B2

PR-REP-LP	029F	PRCHAR	1D66	PRNAME	1D50	PRNM-LP	1D53

PROC	0753	PROG-LINE	0130	PRT-OUT	19FC	PT-N-CHAN	17ED

RCL-T-CH	17B9	RCLM-CH	177F	RCLM-MAP	1114	RCLM-NUM	0182

RCLM-OLD	09E8	RD-NEXT	1A86	RD-RANDOM	1A17	RD-SECTOR	1A4B

RE-MAP	162D	RE-MAP-LP	163D	READ-RS	0BB1	READ-SEQ	1A09

REC-BYTE	0B8E	REC-PROC	0B9A	REP-MSG	0258	REPTEST	1811

RES-B-MAP	12FE	RES-VARS	024D	REST-MAP	1391	REST-N-AD	1691

REST-STRM	135F	RETAD-RUN	05DD	RETAD-SYN	05E0	RMERR-2	0040

ROMERR	0028	ROTATE	12F8	RS-SH	1AC5	RS-SH2	11A3

RUNTIME	011B	RWF-ERR	1132	S-BLK-END	087D	S-PACK-1	0DAB

S-SC-DEL	0F7D	S-STAT	016F	SA-B-END	0891	SA-BLK-LP	0872

SA-BLOCK	086E	SA-BYTE	0880	SA-DRI-2	1530	SA-DRI-3	1538

SA-DRI-4	155E	SA-DRI-WR	1552	SA-DRIVE	14DA	SA-HEADER	084F

SA-MAP	1613	SA-MAP-LP	1620	SA-NET	088E	SAVE-M	0849

SAVE-RUN	1E7F	SAVE-SYN	082F	SC-L-LOOP	0133	SCOUT-END	0F56

SCREEN$	0771	SE-NAME	1C9A	SEL-DRIVE	17F7	SEND-BLK	1275

SEND-NEOF	0EF5	SEND-PACK	0DB2	SEND-RESP	0FBE	SEND-SC	0F61

SENDSCOUT	0DDA	SEPARATOR	05B1	SER-IN-2	0C1D	SER-OUT-L	0C88

SERIAL-IN	0BD8	SET-BAUD	0AC9	SET-PROG	0A15	SET-T-MCH	0FE8

SH-ERR	0020	SKIP-NUN	014E	SP-DL-1	0DF6	SP-N-END	0E05

ST-BF-LEN	0D88	ST-END	05B7	ST-ERROR	0068	ST-MAP-AD	108A

ST-SHADOW	0008	START-2	009A	START-3	00A5	START-4	00BC

START-BIT	0BD1	START-SA	14E8	STCHK	1354	STO-DISP	137E

STORE-DSP	1B23	STORE-LEN	0E93	SW-MOTOR	182A	T-CH-NAME	1061

T-FURTHER	0BF9	T-INPUT	0B6F	T-LD-NET	09DE	T-M-CODE	0911

T-NA-1	1CA4	T-NA-2	1CAF	T-OTHER	1E26	TCHAN-IN	0B7B

TCHAN-OUT	0C3C	TEST-BAUD	06B0	TEST-BLKN	0E45	TEST-BUFF	0D1E

TEST-CODE	00E9	TEST-DTR	0C74	TEST-ERR	18E9	TEST-LOW	013B

TEST-M-BF	1134	TEST-MAP	106F	TEST-MCHL	10F5	TEST-MNAM	0685

TEST-NEXT	060C	TEST-OUT	0D7A	TEST-PMAP	1306	TEST-RET	05BF

TEST-SAVE	07A7	TEST-SCT	1C0A	TEST-SP	003A	TEST-STAT	068F

TEST-TYPE	08F2	TIME-OUT	0D5F	TON-DELAY	1809	TRY-AGAIN	0D45

TS-L-NET	08CD	TS-L-RS	08D3	TST-AGAIN	0BC5	TST-MERGE	0904

TST-MR-M	0988	TST-MR-N	0994	TST-N-EOF	0D38	TST-NUM	1DDA

TST-PLACE	16AC	TST-SPACE	09BE	TST-TYPE	09C7	TURN-ON	1802

UNKN-1	1902	UNKN-2	191C	UNKN-3	1929	UNKN-4	1952

UNKN-5	1959	UNKN-6	1961	UNKN-7	1968	UNKN-8	196C

UNKN-9	1976	UNPAGE	0700	UNT-MARK	0FD2	UNTIL-MK	0FAE

UNTILFIVE	1673	UPD-NXT-S	17A4	UPD-POINT	1384	UPD-STRM	1789

USE-C-RC	1A63	USE-R	1495	USE-REC	15DF	VAR-EXIST	0235

VE-FAIL	1664	VE-M-E	1658	VERIF-SYN	089E	VR-BN	0A8A

VR-DATA	0803	WAIT-1	0BF0	WAIT-2	0BF1	WR-F-TEST	1BD6

WR-RECD	11FF	WR-S-1	1AAD	WR-S-2	1ABF	WR-S-3	1AC7

WR-SECTOR	1A91	WRITE-PRC	120D	WT-SCOUT	0F1E	WT-SYNC	0F35

WTKEY	19DE	

�APPENDIX 3

'Shadow' system variables

Notes	Address	Name	Contents

X1	23734 5CB6	FLAGS3	Various flags:

			bit 0 -	set during execution of 'new' commands.

			bit 1 -	set during execution of CLEAR# command.

				On entry to the shadow ROM, it is set

				at the first 'paging' operation.

			bit 2 -	set if the main ROM error handler is to

				be used. (Normally it is always reset).

			bit 3 -	set if using the network.

			bit 4 -	set during execution of LOAD and MOVE.

			bit 5 -	set during execution of SAVE conwsand.

			bit 6 -	set during execution of MERGE conmiand.

			bit 7 -	set during execution of VERIFY cormnand.

			FLAGS3 may be addressed with (IY+124).

X2	23735 5CB7	VECTOR	Normally points to +01F0 (ERR-6). You may modify this

			address to point to a RAM routine.

X10	23737 5CB9	SBRT	ROM paging subroutine as follows:

			5CB9 LD HL,nnnnn

			5CBC CALL nnnnn

			5CBF LD (H-L),HL

			5CC2 RET

			H-L EQU +5CBA

			Used to save the value of HL while calling 'main'

			ROM routines.

2	23747 5CC3	BAUD	Timing constant used during RS232 i/o.

			May be obtained with:

			(3500000/(26*baud rate))-2

1	23749 5CC5	NTSTAT	Network own station number 1..64.

1	23759 5CC6	IOBORD	Border colour used during I/O; normally 0 (black)

N2	23751 5CC7	SER-FL	Low byte may be 00 or 01; high byte holds a received

			byte if low byte is 01.

N2	23753 5CC9	SECTOR	Counter of sectors examined during Microdrive

			operations.

N2	23755 5CCB	CHADD-	Temporary store for CH-ADD.

1	23757 5CCD	NTRESP	Store for network response code +01.

1	23758 5CCE	NTDEST	Start of network buffer; destination station number

			for the current packet (0..64).

1	23759 5CCF	NTSRCE	Station number of 'sending' Spectrum for the current

			packet.

X2	23768 5CD0	NTNUMB	Current packet block number (0..65535).

N1	23762 5CD2	NTTYPE	Packet type (00 for normal packets, 01 for EOF).

X1	23763 5CD3	NTLEN	Length of the data block being received, 1..255.

N1	23764 5CD4	NTDCS	Current data block checksum.

N1	23765 5CD5	NTCHS	Current header block checksum.

N2	23766 5CD6	D-STR1	Start of first 8-byte file specifier; drive number

			1..8, destination station number 0..64

			or baud rate 75..19200.

N1	23768 5CD8	S-STR1	Stream number 0..15.

N1	23769 5CD9	L-STR1	Device specifier "m", "n", "t" or "b".

N2	23770 5CDA	N-STR1	Filename length

N2	23772 5CDC		Filename start address.

N2	23774 5CDE	D-STR2	Start of 2nd 8-byte file specifier, used by MOVE

			and LOAD commands.

N1	23776 5CE0	S-STR2	See S-STR1.

N1	23777 5CE1	L-STR2	See L-STR1.

N2	23778 5CE2	N-STR2	See N-STR1.

N2	23788 5CE4

N1	23782 5CE6	HD-00	Start of workspace used by LOAD, SAVE, VERIFY and

			MERGE commands. File type, may be:

			00 - program	01 - numeric array

			02 - string array	03 - bytes

N2	23783 5CE7	HD-0B	Data blocklength.

N2	23785 5CE9	HD-0D	Data block start address.

N2	23787 5CEB	HD-0F	Program length (without variables), or array name.

N2	23789 5CED	HD-11	Autostart line number (+FFFF if no autostart), or

			address of the routine called by using 'hook code'

			+32.

1	23791 5CEF	COPIES	Number of copies made by SAVE. Reset to +01 after

			the SAVE.

�APPENDIX 4

Channels

1. MICRODRIVE CHANNEL

This area is used to communicate with the Microdrive device; it is created in the CHANS area. The start address is pointed by the IX index register in the shadow ROM program.

0	+0008	Main ROM 'output' routine.

2	+0008	Main ROM 'input' routine.

4	'M'	Channel specifier ('M'+80H denotes a 'temporary' channel,

		used by SAVE, MOVE, etc.).

5	+11D8	Shadow ROM 'output' routine.

7	+1122	Shadow ROM 'input' routine.

9	+0253	Channel length.

11	CHBYTE	Position of the next byte to be received or stored in the

		buffer (0..512).

13	CHREC	Record number 0..255. Also used as temporary store of sector

		number.

14	CHNAME	10-byte filename with trailing spaces.

24	CHFLAG	Bit 0 set indicates a 'write' channel.

		Bit 0 reset indicates a 'read' channel.

25	CHDRIV	Drive number 1..8.

26	CHMAP	Address of microdrive map.

28	-	12 bytes of header preamble (ten zeros and two +FF). Used to

		mark the start of the header block.

40	HDFLAG	Bit 0 set indicates that the received block is a header.

41	HDNUMB	Sector number from which the header comes.

42	-	Unused

44	HDNAME	10-byte cartridge name with trailing spaces.

54	HDCHK	Checksum from HDFLAG to HDCHK-1.

55	-	12 bytes of data preamble, as for the header; used to mark the

		start of the record descriptor.

67	RECFLG	Bit 0 reset indicates that the received block is a record

	 	descriptor.

		Bit 1 is set if the record is the EOF one.

		Bit 2 is reset if the record is part of a PRINT-type file.

68	RECNUM	Record number 0..255.

69	RECLEN	Number of bytes in the record (0..512).

71	RECNAM	10-byte record name with trailing spaces.

81	DESCHK	Checksum from RECFLG to DESCHK-l.

82	CHDATA	Start of 512-byte buffer.

594	DCHK	Buffer checksum.

Bytes 0..27 are used as 'channel descriptor' and are	never transmitted; bytes 28..54 are the 'header block'; bytes 55..594 are the 'data block'.

Bytes 55..91 may be collected (or written) as 'record descriptor', without affecting the data buffer starting from CHDATA.

2. NETWORK CHANNEL

As with the Microdrive channel, this area is addressed by using the IX index

register it is used to communicate through the Local Area Network.

0	+0008	Main ROM 'Output' routine,

2	+0008	Main ROM 'Input' routine.

4	'N'	Channel specifier ('N'+80H denotes a 'temporary' channel).

5	+0D6C	Shadow ROM 'Output' routine.

7	+0D9C	Shadow ROM 'Input' routine.

9	+0114	Length of the channel.

11	NCIRIS	Destination station number 0..64.

12	NCSELF	Own station number 1..64.

13	NCNUMB	Current block bumber 0..65535.

15	NCTYPE	Packet type: 00 normal packet, 01 'end of file' packet.

16	NCOBL	Number of bytes held in the buffer during 'output' (holds 0 if

		the channel is used for reading).

17	NCDCS	Checksum of the 255-byte buffer.

18	NCHCS	Checksum of block NCIRIS...NCDCS.

19	NCCUR	Position of the currently received byte (in the buffer).

20	NCIBL	Number of bytes in the buffer during 'output' (holds zero if

		the channel is used for writing).

21	NCB	255-byte data buffer.

While 'sending', the bytes 11.18 form the 'header block' (to be stored into the system variables NTDEST...NTCHS of the receiving Spectrum). Bytes 21..275 form the 'data block'.

3.	RS232 "T" CHANNEL

This channel is created only when the RS232 link is to be attached to a stream. 'Temporary' RS232 channels are never created, because the RS232 I/O does not require a buffer to store the data to be sent or received (the only 'workspace' is made by the SER-FL system variable).

0	+0008	Main ROM 'output' routine.

2	+0008	Main ROM 'input' routine.

4	'T'	Channel specifier.

5	+0C3C	Shadow ROM 'output' routine.

7	+0B6F	Shadow ROM 'input' routine.

9	+000B	Channel length.

4.	RS232 "B" CIANNEL

0	+0008	Main ROM 'output' routine.

2	+0008	Main ROM 'input' routine.

4	'B'	Channel specifier.

5	+0C5A	Shadow ROM 'output' routine.

7	+0B75	Shadow ROM 'input' routine.

9	+000B	Channel length.

�APPENDIX 5

Bibliography

S. Vickers, ZX SPECTRUM BASIC PROGRAMMING (Sinclair Research Ltd.)

MICRODRIVE AND INTERFACE I MANUAL (Sinclair Research Ltd.)

I. Logan, F. O'Hara, THE COMPLETE SPECTRUM ROM DISASSEMBLY (Melbourne House)

I. Logan, SPECTRUM MICRODRIVE BOOK (Melbourne House)

R. Zaks, PROGRAMMING THE Z80 (Sybex)

�APPENDIX 6

Index to routines

(For edition 1 Shadow ROM)

0000 Return to main ROM

0008 Start

0010 Call a main ROM routine

0018 Test if syntax is being checked

0020 Shadow error

0028 Main ROM error restart

0030 Create new system variables restart

0038 Maskable interrupt

003A TEST-SP

0040 Main ROM error routine

0066 Non-maskable interrupt

0068 ST-ERROR

0077 CHECK-SP

0081 CALBAS-2

009A Control routine

01F7 Create new system variables routine

023A System variables default values

024D Reset new system variables

0258 Shadow report printing

0287 Shadow report messages

0486 CAT command syntax routine

04B4 FORMAT command syntax routine

04ED OPEN command syntax routine

0531 ERASE command syntax routine

053D MOVE command syntax routine

0559 CLS# command routine

057F CLEAR# command routine

059F Exchange file specifiers

05B1 SEPARATOR

05B7 End of statement

05Cl Return to the main interpreter

05E7 Evaluate string expression

05F2 Evaluate channel expression

061E Evaluate numeric expression

062F Evaluate filename

064E Evaluate stream number

0665 Check "m" parameters

0685 Check "m" parameters and filename

068F Check station number

06A3 Evaluate "x";n;"name"

06B0 Check baud rate

06B9 Evaluate stream or expression

0700 UNPAGE

0701 Evaluate parameters

082F SAVE command syntax routine

0880 Save a byte to network or RS232 link

0894 LOAD command syntax routine

089E VERIFY command syntax routine

08A8 MERGE command syntax routine

08AF LOAD-VERIFY-MERGE commands routine

0A5C LOAD or VERIFY

0A95 Load "run" program

0AC9 Set "BAUD" system variable

0AEF RS232 timing constants

0B13 Open RS232 channel in CHANS area

0B47 Attach channel to a stream

0B64 "T" channel data

0B6F "T" channel input

0B75 "B" channel input

0B7B "T" channel input service routine

0B81 "B" channel input service routine

0C3C "T" channel output

0C5A "B" channel output

0CA9 Border colour restore

0CB4 Break into I/O operation

0CBD CALL-INP

0D0C "N" channel input

0D12 "N" channel input service routine

0D6C "N" channel output

0D93 OUT-BLK-N

0DAB S-PACK-1

0DB2 SEND-PACK

0E0F BR-DELAY

0E18 Header and data block receiving

0EA3 OPEN "N" channel command routine

0EA9 Open temporary "n" channel

0EB5 Open permanent "n" channel

0EEA "N" channel data

0EF5 Send EOF block to network

0F03 Network state

0F0E Check-resting

0F1E Wait-scout

0F61 Send-scout

0F92 INPAK

0FBE Send response byte

0FC5 OUTPAK

0FE8 Set a temporary "m" channel

10C4 Reclaim "m" channel

1122 "M" channel input

112C "M" channel input service routine

1177 Get a record

11A5 Get header and data block

11D8 "M" channel output

11FF Write record onto Microdrive

1264 CHK-FULL

1275 SEND-BLK

12A6 Close file

12BE ERR-RS

12C4 Fetch header from Microdrive

12DA Check map bit state

12FF Reset bit in map area

1306 Check 'pseudo-map' bit state

1312 Decrease sector counter

131E CHECK-NAME

1341 Calculate/compare checksums

135F Restore stream data

1391 Restore map addresses

13CC "M" channel data

13E5 Preamble data

13F1 MOVE command

1455 Use stream or temporary channel

14A4 Close 'MOVE' channel

14C7 Exchange DSTR1 and STR2 contents

14DA Save data block into Mlcrodrive

1580 Get header information from Microdrive

15A9 Load or verify block from Microdrive

1613 Save Microdrive Map contents

162D Restore Microdrive Map contents

1648 LD-VE-M

1666 Fetch record from Microdrive.

1691 Restore address of filename

1708 CLOSE STREAM

1718 CLOSE command

17B9 Reclaim temporary channels

17F7 Select drive motor

1867 1 millisecond delay

1872 Send data block to Microdrive Head

18A3 Receive block from Microdrive Head

18E9 TEST-BRK

18FA DELAY-BC

1902 UNKN-1

196C UNKN-8

1981 HOOK-CODE

19A4 Hook code +32

19A8 Hook code +31

19A9 Hook code addresses

19D9 Console input

19EC Console output

19FC Printer output

1A01 Keyboard test

1A09 Read sequential

1A17 Read random

1A24 Close network channel

1A31 Get packet from network

1A4B Read sector

1A86 Read next sector

1A91 Write sector

1AE0 Clear buffer contents

1AF0 Open a permanent "m" channel

1B29 Open a temporary "m" channel

1B6E FORMAT "m" command

1C58 CAT command

1D38 FREESECT

1D59 PRNAME

1D66 PRCHAR

1D6E ERASE command

1E3E Signal 'free sector'

1E53 Obtain record descriptor

1E66 Calls to the command routines

1E87 DISP-HEX

1E9E DISP-HEX2

1EA9 DISP-CH

1ECE HEX-LINE

�APPENDIX 7

Shadow ROM issue 2

The new ZX Interface 1's with serial number greater than 87315 have been provided with a new shadow ROM, with some general improvements.

The Spectrums fitted with the 'new' interface will print '80' in response to the command 'PRINT PEEK 23729'.

The main changes may be summed up as follows:

The TCHAN-OUT subroutine ("t" channel output routine) has been remarkably improved; the TAB function now is supported, as well as the 'comma' control code, and the 'leading space' bug has been corrected. The whole subroutine is listed below.

0C3A	TCHAN-OUT	CP	+A5	Jump if the code is not a token

0C3C		JR	C,0C44,NOT-TOKEN	code.

0C3E		SUB	+A5	Reduce range of token.

0C40		RST	10,CALBAS	And detokenise it by calling

0C41		DEFW	+0C18	recursively this routine via main

0C43		RET		ROM 'PO-TOKENS' routine.

0C44	NOT-TOKEN	LD	HL,+5C3B	This is FLAGS.

0C47		RES	0,(HL)	Reset 'leading space' flag.

0C49		CP	+20	Is the character a space?

0C4B		JR	NZ,0C4F,NOT-LEAD	Jump if it is not.

0C4D		SET	0,(HL)	Otherwise set 'leading space' flag.

0C4F	NOT-LEAD	CP	+7F	Jump if the character is not

0C51		JR	C,0C55,NOT-GRAPH	a 'graphic' character.

0C53		LD	A,+3F	Otherwise print a '?'

0C55	NOT-GRAPH	CP	+20	Jump with codes lower than +20.

0C57		JR	C,0C78,CTRL-CD

0C59		PUSH	AF	Save the character code.

0C5A		INC	(IY+118)	Increment current print position.

0C5D		LD	A,(5CB1)	Fetch line width.

0C60		CP	(IY+118)	Jump if the position is lower than

0C63		JR	NC,0C6C,EMIT-CH	or equal to the value of WIDTH.

0C65		CALL	0C74,NEWLINE	Send CR and LF codes when pos>width.

0C68		LD	(IY+118),+01	Reset 'print position' to +01.

0C6C	ENIT-CH	POP	AF	Restore character to be printed.

0C6D		JP	0D07,BCHAN-OUT	Print it.

0C70	CTRL-CD	CP	+0D	Jump if the character is not 'CR'.

0C72		JR	NZ,0C82,NOT-CR

0C74		LD	(IY+118),+00	Clear print position.

0C78		LD	A,+0D	Print a CR code.

0C7A		CALL	0D07,BCHAN-OUT

0C7D		LD	A,+0A	Print a LF code.

0C7F		JP	0D07,BCHAN-OUT

0C82	NOT-CR	CP	+06	Jump if the character is not the

0C84		JR	NZ,0CA5,NOT-CMM	'comma' control code.

0C86		LD	BC,(5CB0)	Fetch width into B, and print

				position into C.

0C8A		LD 	E,+00

0C8C	SPC-COUNT	INC	E	Increment space counter.

0C8D		INC	C	Increment print position.

0C8E		LD	A,C	Jump if 'position' reaches the

0C8F		CP	B	right margin.

0C90		JR	Z,0C9A,PRINT-SPC

0C92	CMM-LOOP	SUB	+08	Tabulate every 8 columns.

0C94		JR	Z,0C9A,PRINT-SPC	Jump when reached the right column.

0C96		JR	NC,0C92,CMMLOOP	Subtract again...

0C98		JR	0C8C,SPC-COUNT	Column not reached, jump back.

0C9A	PRINT-SPC	PUSH	DE	Save space counter.

0C9B		LD	A,+20	Print the required number of spaces

0C9D		CALL	0C3A,TCHAN-OUT	by calling TCHAN-OUT recursively.

0CA0		POP	DE	Restore space counter.

0CA1		DEC	E

0CA2		RET	Z

0CA3		JR 0C9A,PRINT-SPC

0CA5 NOT-CNN	CP	+16	Jump with AT control code.

0CA7		JR	Z,0CB5,TAB-PROC

0CA9		CP	+17	Jump with TAB control code.

0CAB		JR	Z,0C5B,TAB-PROC

0CAD		CP	+19	Return with codes lower than 16d

0CAF		RET	C

0CB0		LD	DE,+0CD0	Service routine for INK, PAPER

0CB3		JR	0CB8,STORE-COD	...control codes.

0CB5 TAB-PROC	LD	DE,+0CC8	Service routine for AT and TAB

0CB8 STORE-COD	LD	(TVDATA-lo),A	Store first operand.

0CBB ALTER-OUT	LD	HL,(CURCHL)	Fetch current channel address.

0CBE		PUSH	DE

0CBF		LD	DE,+0005	Point to 'output address' pointer.

0CC2		ADD	HL,DE

0CC3		POP	DE

0CC4		LD	(HL),E	Store new 'output' address.

0CC5		INC	HL

0CC6		LD	(HL),D

0CC?		RET

0CC8 TAB-SERV	LD	DE,+0CD0	The new 'output' address.

0CCB		LD	(TVDATA-hi),A	Store second operand.

0CCE		JR	0CBB,ALTER-OUT	Jump to change the 'output' address.

0CD0		LD	DE,+0C3A	Restore the normal 'output' address.

0CD3		CALL	0CBB,ALTER-OUT

0CD6		LD	D,A	Pass 'second operand' to D.

0CD7		LD	A,(TVDATA-lo)	Fetch first operand (code type).

0CDA		CP	+16	Jump with AT.

0CDC		JR	Z,0CE6,TST-WIDTH

0CDE		CP	+17	Return unless the code is TAB.

0CE0		CCF

0CE1		RET	NZ

0CE2		LD	A,(TVDATA-hi)	Fetch TAB column.

0CE5		LD	D,A	Move it into D.

0CE6 TST-WIDTH	LD	A,(5CB1)	Fetch line width.

0CE9		CP	D

0CEA		JR	Z,0CEE,TAB-MOD	Jump if TAB is at last column.

0CFC		JR	NC,0CF4,TABZERO	Jump if TAB is within range.

0CEE TAB-MOD	LD	B,A	Fetch column width.

0CEF		LD	A,D	Fetch TAB column.

0CF0		SUB	B	A=TAB-WIDTH

0CF1		LD	D,A	The new position.

0CF2		JR	0CE6,TST-WIDTH	Take (TAB pos.) MOD (width).

0CF4 TABZERO	LD	A,D	Fetch TAB column.

0CF5		OR	A	New line with TAB 0.

0CF6		JP	Z,0C74,NEWLINE

0CF9	TABLOOP	LD	A,(5CB0)	Fetch current print position.

0CFC		CP	D	Return if already at the..

0CFD		RET	Z	..TAB position.

0CFE		PUSH	DE

0CFF		LD	A,+20	Print the TAB spaces.

0D01		CALL	0C3A,TCHAN-OUT

0D04		POP	DE

0D05		JR	0CF9,TABLOOP

You should note that variable line width is allowed by POKEing the required value into the location 23729; the default value is 80.

Other important alterations concern with Microdrive reading operations (i.e. channel opening, CAT command); the number of sectors examined is not fixed to 255, but is given by 'maximum sector number + 3'; this prevents the routine from reading 'nonexistent' sectors, and reduces the time required in the command execution.

The checking operation done by the FORMAT command routine is now made directly with OUT instructions, without using the Microdrive channel to send/receive the blocks containing 'test data'.

Other minor changes are:

- The OP-RS-CH routine stores the "B" specifier into (IX+4) when opening a RS232 "b" channel.

- Most of the tests done to the BREAK key have been replaced by calls to the TEST-BRK subroutine at +163E.

- The carry flag is preserved when calling the BORD-REST subroutine at +0D4D; thus, the 'hook code' +2F works correctly.

- When a "m" or "n" channel is created in the CHANS area (OP-PERM-N and SET-T-MCH), a check is made to see if there is sufficient memory to insert the new space.

- The GET-M-HD subroutine, returns (with bit 0 of HDFLAG or RECFLG inverted) when 'time-out' occurs during the reading operation.

- An instruction 'SET 7,(HL)' has been inserted at location +1741 (i.e. the middle of the CLOSE routine), to correct the bug present in the 'old' shadow ROM (see comment to the CLOSE routine).

- No CR code is sent when a RS232 'b" channel is closed.

- The 'hook code' +2B calls the SET-T-MCH subroutine.

- Two new 'hook codes', +33 and +34, are now available. Hook code +33 may be used to fetch a 'record descriptor' from the next sector; the microdrive motor must be turned on before calling the routine. The record descriptor is stored into the current microdrive channel (whose start address must be held into the IX index register), and the carry flag is returned set if any error occurs, or if the 'record descriptor' holds a filename starting wIth CHR$ 0. Hook code +34 opens a RS232 "b" channel by calling the OP-RS-CH subroutine. The channel base address is returned into the DE register pair.

�APPENDIX 8

How to tell which edition Interface 1 you have

There are two different versions of the ZX Interface, each having a slightly different program in its ROM. It is important that you know which version of the ROM you have, and you can find this out in the fo5lowing manner:

Run the following line of BASIC:

	CLOSE # 0: PRINT PEEK 23729

If this prints out a '0', then you have an edition 1 Interface 1. if it prints out '80', you have an edition 2 Interface 1.

There is the possibility that Sinclair Research may release a third edition of the Shadow ROM, with a few more changes. If you should get one of these, the extended BASIC commands may not work properly with it. The 'PRINT PEEK 23729'

test probably wont distinguish between the edition 2 and edition 3 Shadow ROMs, You can, however, upload the Shadow ROM into a higher area of RAM, disassemble it there, and compare the code to the listings given in this book. The following

program will load the Shadow ROM into RAM from 32768 to 48968:

		ORG	34000

		LD	HL,LABEL

		LD	(23789),HL

		RST	08

		DEFB	32H

	LABEL	POP	HL

		POP	HL

		LD	HL,0

		LD	DE,32768

		LD	BC,8192

		LDIR

		RST	0

		RET

To do the same thing from BASIC, use the following program:

	10	CLEAR 26000

	20	FOR X=54000 TO 54022

	30	READ Y

	40	POKE X,Y

	50	NEXT X

	60	RAND USR 54000

	70	DATA 33,248,210,34,237,92,207,50,225,225

	80	DATA 33,0,0,17,0,128,1,0,32,237,176,199,201

For information on how to make the extended BASIC commands work with edition 3 or later Shadow ROMs, refer to Appendix 11, page 165.

�APPENDIX 9

Basic loader program

for edition 2 Shadow ROM

(For owners of Interface 1s equipped with the edition 2 Shadow ROM.)

Here is the new BASIC loader program, changed to run with the new shadow ROM. To enter the new BASIC commands into your Spectrum without using an assembler, enter the following BASIC loader program.

	1	CLEAR 63743

	10	FOR A=63744 TO 65951 STEP 12

	20	PRINT "ADDRESS:";A'

	30	LET C=0

	40	FOR B=1 TO 12

	50	LET Z=A+B-1: IF Z<=65051 THEN INPUT X: PRINT X: POKE Z,X: LET C=C+X

	60	NEXT B

	70	PRINT '"CHECKSUM=";C

	80	INPUT "THIS IS WRONG ? (Y/N) "; LINE Y$: IF CODE Y$=80 OR CODE Y$=121 THEN PRINT "Retype from address ";A: PAUSE 100: CLS : GO TO 20

	90	IF CODE Y$<>78 AND CODE Y$<>110 THEN GO TO 80

	100	CLS: NEXT A

	110	PRINT "Saving the program"

	120	SAVE *"M";l;"SHADP" CODE 63744,1308

When you have finished typing this program into your Spectrum, you should 'RUN' it. You should then type from the listing on the next page, the 12 bytes from the address shown on the screen. When you have typed the first 12 bytes, a 'checksum' should be displayed on the screen; if it matches the one printed on the listing, at the right hand side of the line, then you have made no mistakes in typing the numbers, and you may enter 'N' or 'n' to continue with the next line. If the checksums do not match, you must enter 'Y' or 'y', and then retype the whole line.

When all numbers have been entered, the program will automatically be saved on Microdrive cartridge (there must be a cartridge with at least 2K free in Microdrive 1). If you wish to save the program on tape, line 120 of the listing should be modified appropriately. When at some 1ater time you wish to use the routines, you have simply to place the cartridge in Microdrive 1, and then to enter the following direct commands:

	CLEAR 63743: LOAD *"M";1;"SHADP" CODE: RANDOMIZE USR 63744

and the new comnands should be available. Note that if you use the NEW command, you should then give the direct command 'RANDOMISE USR 63744' to reinitialise the VECTOR system variable.

�Here is the data for the new Shadow ROM:

	63744:	207	49	33	9	249	34	183	92	201	215	24	0	1296

	63756:	254	244	202	45	249	254	42	202	114	249	254	215	2384

	63768:	202	11	250	254	227	202	188	251	254	229	202	12	2282

	63780:	252	254	224	202	175	252	195	240	1	215	32	0	2042

	63792:	254	42	194	75	249	215	121	28	205	183	5	215	1786

	63804:	153	30	197	215	153	30	197	225	193	113	35	112	1653

	63816:	195	193	5	215	130	28	254	44	194	240	1	215	1714

	63828:	32	0	215	140	28	205	183	5	215	241	43	197	1504

	63840:	213	215	153	30	80	89	223	193	120	177	202	193	1890

	63852:	5	237	176	195	193	5	215	32	0	254	207	202	1721

	63864:	102	250	246	32	254	108	194	197	249	215	32	0	1879

	63876:	215	130	28	205	183	5	215	153	30	96	105	124	1489

	63888:	205	214	20	125	205	214	20	62	32	205	248	20	1570

	63900:	229	6	6	197	126	205	237	20	35	16	249	193	1519

	63912:	225	126	230	127	254	32	56	6	254	128	48	2	1488

	63924:	24	2	62	32	205	248	20	35	16	235	62	13	954

	63936:	205	248	20	24	202	254	101	194	240	1	215	32	1736

	63948:	0	215	130	28	205	183	5	215	153	30	253	203	1620

	63960:	12	126	202	240	1	120	230	192	194	240	1	237	1795

	63972:	67	73	92	237	123	61	92	33	7	250	229	42	1306

	63984:	61	92	229	33	127	16	229	237	115	61	92	253	1545

	63996:	54	0	255	215	169	15	33	56	15	229	199	225	1465

	64008:	195	180	18	215	32	0	254	42	194	240	1	215	1586

	64020:	121	28	254	44	194	240	1	215	121	28	205	183	1634

	64032:	5	215	148	30	245	215	148	30	167	40	54	79	1376

	64044:	6	0	197	215	148	30	167	40	44	79	6	0	932

	64056:	197	215	153	30	197	205	0	7	225	209	193	241	1872

	64068:	229	245	197	229	213	205	181	3	209	225	193	241	2370

	64080:	167	237	66	48	240	61	225	32	235	33	193	5	1542

	64092:	34	237	92	207	50	253	54	0	0	239	215	32	1413

	64104:	0	205	30	6	205	183	5	205	109	6	62	2	1018

	64116:	215	1	22	205	165	16	221	126	25	205	50	21	1272

	64128:	205	169	19	33	9	251	17	24	0	205	5	251	1188

	64140:	205	38	20	32	239	33	9	251	203	70	32	232	1364

	64152:	58	9	251	33	12	251	182	230	2	194	169	250	1641

	64164:	205	227	19	24	215	58	13	251	183	40	209	58	1502

	64176:	10	251	183	32	203	221	126	41	221	190	13	40	1531

	64188:	22	205	33	251	205	0	251	221	126	13	183	194	1704

	64200:	128	250	221	126	41	221	119	13	195	128	250	221	1913

	64212:	229	175	205	50	21	205	0	251	221	229	225	17	1828

	64224:	44	0	25	205	178	251	205	0	251	205	67	29	1460

	64236:	123	203	63	215	40	45	215	227	45	205	0	251	1632

	64248:	221	225	205	159	17	195	193	5	62	13	195	113	1603

	64260:	29	229	195	242	21	0	0	0	0	0	0	0	716

	64272:	0	0	0	0	0	0	0	0	0	0	0	0	0

	64284:	0	0	0	0	0	33	140	92	54	255	33	13	620

	64296:	251	205	178	251	62	32	205	113	29	58	9	251	1644

	64308:	203	87	194	62	251	62	245	195	113	29	33	24	1498

	64320:	251	126	183	202	99	251	254	3	202	157	251	61	2040

	64332:	245	62	228	205	113	29	58	29	251	230	31	198	1679

	64344:	96	205	113	29	241	200	62	36	195	113	29	33	1352

	64356:	32	251	126	230	192	192	43	62	202	205	113	29	1677

	64368:	94	35	86	235	17	16	39	205	143	251	17	232	1370

	64380:	3	205	143	251	17	100	0	205	143	251	17	10	1345

	64392:	0	205	143	251	17	1	0	62	255	60	183	237	1414

	64404:	82	48	250	25	246	48	195	113	29	62	175	205	1478

	64416:	113	29	35	229	35	35	205	112	251	62	44	205	1355

	64428:	113	29	225	195	112	251	6	10	126	205	113	29	1414

	64440:	35	16	249	201	215	32	8	254	35	194	240	1	1472

	64452:	215	121	28	205	183	5	215	148	30	245	215	148	1758

	64464:	30	254	16	210	99	6	215	1	22	221	42	81	1197

	64476:	92	221	126	4	254	77	194	45	6	221	203	24	1467

	64488:	70	194	13	18	241	221	119	13	221	126	25	205	1466

	64500:	50	21	33	255	0	34	201	92	205	95	18	175	1179

	64512:	221	119	11	221	119	12	205	50	21	195	193	5	1372

	64524:	215	32	0	215	130	28	205	183	5	215	148	30	1406

	64536:	254	16	210	99	6	215	1	22	221	42	81	92	1259

	64548:	221	126	4	254	77	194	45	6	221	203	24	70	1445

	64560:	194	6	9	221	126	25	205	50	21	33	255	0	1145

	64572:	34	201	92	205	128	18	56	19	40	14	221	203	1231

	64584:	67	78	40	11	221	126	41	221	119	13	24	3	964

	64596:	205	227	19	205	247	19	32	227	219	239	230	1	1870

	64608:	202	185	31	205	63	31	218	126	18	221	110	69	1479

	64620:	221	102	70	221	117	11	221	116	12	221	203	24	1539

	64632:	198	205	73	30	205	169	19	221	126	13	221	190	1670

	64644:	41	32	245	62	230	211	239	1	104	1	205	82	1453

	64656:	22	221	229	225	17	55	0	25	205	179	21	62	1261

	64668:	238	211	239	205	227	19	221	126	68	221	119	13	1907

	64680:	175	205	50	21	195	193	5	215	32	0	254	33	1378

	64692:	40	11	254	47	40	33	254	63	40	54	195	240	1271

	64704:	1	215	121	28	205	183	5	215	148	30	167	202	1520

	64716:	250	253	50	21	254	215	148	30	61	50	20	254	1606

	64728:	195	193	5	215	121	28	205	183	5	215	148	30	1543

	64740:	50	22	254	215	148	30	50	23	254	175	50	27	1298

	64752:	254	195	193	5	215	32	0	215	130	28	205	183	1655

	64764:	5	215	148	30	254	1	40	12	62	3	253	203	1226

	64776:	124	142	205	24	23	195	193	5	62	3	215	39	1230

	64788:	23	33	17	0	167	237	66	218	47	5	205	23	1041

	64800:	11	213	33	5	0	25	17	53	253	115	35	114	874

	64812:	62	3	50	216	92	209	195	81	11	254	165	211	1548

	64824:	62	12	253	203	1	134	254	32	56	91	32	4	1134

	64836:	253	203	1	198	245	62	1	50	24	254	241	254	1786

	64848:	127	56	2	62	63	205	7	13	58	20	254	71	938

	64860:	58	19	254	184	48	5	60	50	19	254	201	205	1357

	64872:	111	253	175	50	24	254	201	62	1	50	24	254	1459

	64884:	61	50	19	254	58	25	254	167	196	7	13	58	1162

	64896:	26	254	167	196	7	13	58	23	254	71	58	27	1154

	64908:	254	60	184	32	0	58	22	254	167	196	7	13	1255

	64920:	175	50	27	254	201	254	13	32	12	58	24	254	1354

	64932:	167	62	1	50	24	254	200	24	194	254	6	32	1268

	64944:	33	42	19	254	58	21	254	71	14	0	12	44	822

	64956:	125	188	48	167	144	40	4	48	251	24	243	197	1479

	64968:	62	32	205	53	253	193	13	32	246	201	254	23	1567

	64980:	192	17	226	253	42	81	92	6	5	9	115	35	1073

	64992:	114	201	50	15	92	17	234	253	24	238	17	53	1308

	65004:	253	205	216	253	58	15	92	71	58	20	254	184	1679

	65016:	48	5	253	54	0	10	239	58	19	254	144	200	1284

	65028:	48	5	237	68	79	24	188	197	205	111	253	193	1608

	65040:	72	24	180	0	80	20	12	60	1	13	10	0	472

�APPENDIX 10

Extended BASIC commands from assembler for edition 2 Shadow ROM

(For owners of Interface 1s equipped with the edition 2 Shadow ROM.)

To add the extended BASIC commands to your Spectrum, if you own an edition 2 Shadow ROM and an assembler, first enter the assembly program on pages 12 to 32 into your Spectrum. Do not enter the table of EQU statements that follows on page 33. These labels all refer to the edition 1 Shadow ROM, and are not relevant to edition 2. Instead, for each label given on page 33, enter the value given in the alphabetical list of Shadow ROM 2 labels which follow. When you have entered this program and assembled it, save it onto Microdrive or tape. To use the new BASIC commands, load the machine code file you have made into your Spectrum at 63744 (F900 Hex), and give the direct command 'RANDOMISE USR 63744'. The new commands should then be available.

Below is an alphabetical list of the labels related to the edition 2 shadow ROM.

ACC-CODE	0D8A	ALL-BITS	102F	ALL-BYTES	05A7	ALL-CHARS	1407

ALL-MOTRS	1570	ALL-STRMS	058E	ALLCHR-2	1418	ALTER-OUT	0CBB

B-INPUT	0B7C	BCHAN-IN	0B88	BCHAN-OUT	0D07	BD-DEL-1	0D1C

BD-DEL-2	0D32	BD-DEL-3	0D48	BD-DELAY	0BD8	BD-DELAY2	0C1D

BF-FILLED	1CFF	BORD-REST	0D4D	BR-DELAY	0EAC	BRCAST	0EDD

BREAK-PGM	05E2	CALBAS	0010	CALBAS-2	0081	CALL-INP	0D5A

CAT	1C52	CAT-LP	1C68	CAT-LP-E	1C77	CAT-RUN	1AB5

CAT-SCRN	04A6	CAT-SYN	0486	CHAN-SPC	10F1	CHECK-M	0665

CHECK-M-2	066D	CHECK-MAP	13C4	CHECK-N	1883	CHECK-R	188F

CHECK-SP	0077	CHK-AG-2	1608	CHK-AGAIN	15F6	CHK-FULL	1349

CHK-LOOP	10B3	CHK-LP-2	160F	CHK-M-EOF	1233	CHK-MAP-2	13BF

CHK-NAME	1403	CHK-NSECT	1C1E	CHK-PRES	154E	CHK-REST	0FC7

CHK-SCT	1BF6	CHK-SCT2	1C05	CHK-TEMPM	17D0	CHK-TEMPN	17DC

CHK-W-MAP	1E3A	CHKEND	015D	CHKEND-L	0169	CHKEVEN	0165

CHKLOOP	15FD	CHKS-ALL	142E	CHKS-BUFF	142B	CHKS-HD-R	1426

CHKS1	0E62	CHKS2	0E71	CHKS3	0EC4	CHKS4	0F24

CHKSYNTAX	0018	CKNAM-END	1423	CL-CHAN	18A8	CL-CHK-N	18BC

CL-M-CH	176B	CL-N-CH	175C	CL-WORK	01AA	CLAIMED	0FD9

CLOSE	1718	CLOSE-CH	1708	CLOSE-M	138B	CLOSE-M2	138E

CLOSE-NET	1F18	CLR#-SYN	057F	CLR-BUFF	1FD4	CLR-ERR	1E77

CLS#-SYN	0559	CMM-LOOP	0C92	CODE	0789	CONS-IN	1ECD

CONS-OUT	1EE0	CONV-1	14E7	COPYCHADD	00FB	CP-NAME	1300

CRT-NEW	09F7	CRT-VARS	01F7	CTRL-CD	0C70	DATA	07D2

DEC-SECT	13F7	DEFAULT	0224	DEFLT-0	079A	DEL-B-CT	1F75

DEL-M-BUF	119F	DEL-O-1	1087	DEL-S-1	15A2	DELAY-BC	1652

DELAY-BC1	1653	DELAY-SC	101A	DISP-CH	14F8	DISP-HEX	14D6

DISP-HEX2	14ED	DISP-NIB	14DF	DL-LOOP	0EAF	DR-READY	1620

E-READ-N	100A	EACH-ST	0152	EACH-VAR	025A	EMIT-CH	0C6C

END-CODE	07B8	END-DATA	081C	END-EXPT	0750	END-INPUT	0D94

END-LD-PR	0A13	END-PR-MS	02B4	END-RS-IN	0C34	END-S-DEL	104C

END-SA-DR	196A	END-SET	0AE8	END1	05C1	ENDC	1AC9

ENDHERE	06CC	ENDRD	16AD	ENTRY	13C7	ENTRY-2	17C0

ERASE	1D79	ERASE-1	1D8A	ERASE-2	1DC3	ERASE-LP	1DA7

ERASE-MK	1E03	ERASE-MK2	1E06	ERASE-RUN	1AAB	ERASE-SYN	0531

ERR-6	01F0	ERR-RS	13A3	ERR-V	01EC	EX-CHANS	17C0

EX-D-STR	059F	EXISTING	07F2	EXPT-EXP1	06B9	EXPT-EXPR	06A3

EXPT-NAME	062F	EXPT-NUM	061E	EXPT-PRMS	0701	EXPT-SPEC	05F2

EXPT-STR	05E7	EXPT-STRM	064E	F-ERROR	1A7B	F-HD-2	1982

F-HD-3	198A	F-M-HEAD	1971	F-N-SCT	1CF4	F-REC1	1A57

F-REC2	1A5D	FAILED	1362	FETCH-ERR	0276	FILL-MAP	1163

FOR-B-T	04CD	FOR-M	04E7	FOR-RUN	1ABA	FORMAT	185D

FORMAT-1	1B75	FR-S-LPB	1D51	FR-S-RES	1D55	FR-SC-LP	1D4D

FREESECT	1D43	FRMT-SYN	04B4	G-HD-RC	1280	G-RDES	1E5E

G-REC-ERR	12B1	G-TYPE	07F6	GET-DESC	1FE4	GET-M-BLK	15F2

GET-M-BUF	15EB	GET-M-HD	15E2	GET-M-HD2	13A9	GET-N-BUF	0DDC

GET-NBLK	0EB5	GET-NBUFF	0F02	GET-PACK	1F25	GET-R-2	1258

GET-R-LP	125F	GET-RECD	1252	GETBF-END	0F3E	GETNB-END	0EFF

GP-ERROR	1F3A	HD-LOOP	0854	HEX-LINE	151D	HEX-LINE2	1522

HOOK-31	1E98	HOOK-32	1E94	HOOK-CODE	1E71	I-AGAIN	181E

IN-AGAIN	0D78	IN-CHK	1E49	IN-M-BLK	1633	IN-NAME	1C8B

INC-BLKN	0E9A	INCREC	1F08	INKEY$	0D98	INPAK	104F

INPAK-2	105A	INPAK-L	105B	INS-NAME	1CDA	INT-SERV	0038

KBD-TEST	1EF5	LCHAN	1482	LD-BLK-2	0936	LD-BLK-3	0945

LD-BLK-4	0956	LD-BLK-5	095D	LD-BLOCK	091D	LD-DATA	080E

LD-HD-NET	08E4	LD-HD-RS	08EB	LD-HDR-2	08F0	LD-HEADER	08DC

LD-NO-PGM	0966	LD-PR-AR	09A7	LD-PROG	09B9	LD-VE-M	1A39

LD-VF-MR	08B3	LINE	073E	LINE-LEN	0144	LOAD-RUN	0A99

LOAD-SYN	0898	LOOK-MAP	19EA	LP-B-MAP	1DF4	LP-P-MAP	1DF0

LP-SCOUT	1015	LPEND	14A6	LV-ANY	0A60	LV-B	0A7D

LV-BN	0A6E	LV-BN-E	0A82	LV-MCH	199A	LV-N	0A76

LVBN-END	0A93	M-AGAIN	1818	M-INPUT	11FD	MAIN-ROM	0000

MAKE-PERM	1AE9	MAKESURE	0FCA	MARK-FREE	1C40	MCHAN-IN	1207

MCHAN-OUT	12B3	MERGE-BLK	096B	MERGE-END	09A4	MISSING-D	0494

MK-BLK	1C4D	MOVE	17F5	MOVE-EOF	1832	MOVE-NA	1CDE

MOVE-OUT	1827	MOVE-RUN	1AB0	MOVE-SYN	053D	MRG-SYN	08AC

N-ACTIVE	1051	N-INPUT	0DA9	NCHAN-IN	0DAF	NCHAN-OUT	0E09

NET-STATE	0FBC	NEW-BUFF	123D	NEW-NAME	18ED	NEWVARS	0030

NEXT-CHAN	10E7	NEXTNUM	01A5	NMINT-SRV	0660	NO-AUTO	0A52

NO-AUTOST	0977	NO-FOR-M	04BF	NO-GOOD	1F45	NO-M-ARR	07DA

NO-NAME	0716	NO-PRT	1374	NO-READ	0D87	NOEMP	139B

NOFULL	12FC	NOINC-C	1DF8	NONAMES	1D27	NONS-BSC	07F4

NONSENSE	0584	NOPRES	155B	NOREAD	12C1	NOT-CMM	0CA5

NOT-CR	0C82	NOT-FOR-B	04D3	NOT-GRAPH	0C55	NOT-LEAD	0C4F

NOT-NET	0722	NOT-OP-B	051F	NOT-OP-M	0500	NOT-PROT	15BF

NOT-RECV	1FF1	NOT-TOKEN	0C44	NOTRIGHT	145C	NREPORT-1	0139

NREPORT-2	0663	NREPORT-3	062D	NREPORT-4	064C	NREPORT-5	0681

NREPORT-8	06A1	NREPORT-9	0683	NREPORT-L	0934	NREPORT-N	0906

NUM-ARR	0819	NXT-1	01A3	NXT-B-MAP	1351	NXT-BYTE	1431

NXT-ENTRY	0AD4	NXT-MOTOR	1597	NXT-SCT	1279	NXT-STRM	144A

NXTCHAN	11E5	OFF-MOTOR	1586	OP-B-CHAN	1FF6	OP-CHAN	186A

OP-F-1	1B16	OP-F-2	1B41	OP-F-3	1B46	OP-F-4	1B49

OP-F-5	1B5B	OP-F-X	1B26	OP-M-C	0529	OP-M-STRM	1ACC

OP-PERM-N	0F52	OP-RS-CH	0B17	OP-RSCHAN	0B4E	OP-RUN	1ABF

OP-STREAM	0B51	OP-STRM	1859	OP-TEMP-M	1B05	OP-TEMP-N	0F46

OPEN-N-ST	0F40	OPEN-RS	051C	OPEN-SYN	04ED	ORD-NAM	1CC1

OREP-1-2	073C	OREPORT-1	04B2	OREPORT-8	0D82	OT-NAMS	1D22

OUT-BLK-N	0E30	OUT-CODE	1EE3	OUT-M-BLK	15B7	OUT-M-BUF	15B3

OUT-M-BYT	15D0	OUT-M-HD	15AD	OUTMEM	0F9E	OUTMEM2	119A

OUTPAK	1082	OUTPAK-L	1089	PAR-1	079F	PAR-2	07B2

PR-REP-LP	02A7	PRCHAR	1D71	PREP-MARK	1C35	PRINT-SPC	0C9A

PRNAME	1D5B	PRNM-LP	1D5E	PROG	0753	PROG-LINE	0130

PRT-OUT	1EF0	PT-N-CHAN	17EB	RCL-T-CH	17B7	RCLM-CH	177D

RCLM-MAP	11EF	RCLM-NUM	0182	RCLM-OLD	09EC	RD-BYT-1	1696

RD-BYT-2	169D	RD-BYT-3	16A5	RD-NEXT	1F7A	RD-RANDOM	1F0B

RD-SECTOR	1F3F	RDLOOP1	165C	RDLOOP2	165E	RDLOOP3	1669

RDLOOP4	166B	RE-MAP	1A1E	RE-MAP-LP	1A2E	READ-BLK	165A

READ-RS	0BAF	READ-SEQ	1EFD	READY-R2	1686	READY-RE	162A

REC-BYTE	0B95	REC-PROC	0B98	REP-MSG	0260	REPTEST	154C

RES-B-MAP	13E3	RES-VARS	0255	REST-MAP	1476	REST-N-AD	1A82

REST-STRM	1444	RETAD-RUN	05DD	RETAD-SYN	05E0	RMERR-2	0040

ROMERR	0028	ROTATE	13DD	RS-SH	1AC5	RS-SH2	11A3

RUNTIME	011B	RWF-ERR	1132	S-BLK-END	0881	S-PACK-1	0E48

S-SC-DEL	103A	S-STAT	016F	SA-B-END	0895	SA-BLK-LP	0872

SA-BLOCK	086E	SA-BYTE	0884	SA-DRI-2	1921	SA-DRI-3	1929

SA-DRI-4	194F	SA-DRI-WR	1943	SA-DRIVE	18CB	SA-HEADER	084F

SA-MAP	1A04	SA-MAP-LP	1A11	SA-NET	0892	SAVE-M	0849

SAVE-RUN	1AC4	SAVE-SYN	082F	SC-L-LOOP	0133	SCOUT-END	1013

SCREEN$	0771	SE-NAME	1CA0	SEL-DRIVE	1532	SEND-BLK	135A

SEND-NEOF	0FAE	SEND-PACK	0E4F	SEND-RESP	107B	SEND-SC	101E

SENDSCOUT	0E77	SEPARATOR	05B1	SER-IN2	0C1B	SER-OUT-L	0D2C

SERIAL-IN	0BD6	SET-BAUD	0ACD	SET-PROG	0A19	SET-T-MCH	10A5

SH-ERR	0020	SIGN-ERR	15DE	SKIP-NUM	014E	SP-DL-1	0E93

SP-N-END	0EA2	SPC-COUNT	0C8C	ST-BF-LEN	0E25	ST-END	05B7

ST-ERROR	0068	ST-MAP-AD	1168	ST-SHADOW	0008	START-2	009A

START-3	00A5	START-4	00BC	START-BIT	0BCF	STAR-SA	18D9

STCHK	1439	STO-DISP	1463	STORE-COD	0CB8	STORE-DSP	1AFF

STORE-LEN	0F30	SW-MOTOR	1565	SYNC-RD	167C	T-CH-NAME	1135

T-FURTHER	0BF7	T-INPUT	0B76	T-LD-NET	09E2	T-M-COOE	0915

T-NA-1	1CAA	T-NA-2	1CB5	T-OTHER	1E31	TAB-MOD	0CEE

TAB-PROC	0CB5	TAB-SERV	0CC8	TABLOOP	0CF9	TABZERO	0CF4

TCHAN-IN	0B82	TCHAN-OUT	0C3A	TEST-BAUD	06B0	TEST-BLKN	0EE2

TEST-BRK	163E	TEST-BUFF	0DBB	TEST-CODE	00E9	TEST-DTR	0D21

TEST-LOW	013B	TEST-N-BF	120F	TEST-MAP	1143	TEST-MCHL	11D0

TEST-MNAM	0685	TEST-NEXT	060C	TEST-OUT	0E17	TEST-PMAP	13E8

TEST-RET	05BF	TEST-SAVE	07A7	TEST-SCT	1BDF	TEST-SP	003A

TEST-STAT	068F	TEST-TYPE	08F6	TIME-OUT	0DFC	TON-DELAY	1344

TRY-AGAIN	0DE2	TS-L-NET	08D1	TS-L-RS	08D7	TST-AGAIN	0BC3

TST-MERGE	0908	TST-MR-M	098C	TST-MR-N	0998	TST-N-EOF	0DD5

TST-NUM	1DE5	TST-PLACE	1A9D	TST-SPACE	09C2	TST-TYPE	09CB

TST-WIDTH	0CE6	TURN-ON	153D	UNPAGE	0700	UNT-MARK	108F

UNTIL-MK	106B	UNTILFIVE	1A64	UPD-NXT-S	17A2	UPD-POINT	1469

UPD-STRM	1787	USE-C-RC	1F57	USE-R	1899	USE-REC	19D0

VAR~EXIST	023D	VE-FAIL	1A55	VE-M-E	1A49	VERIFSYN	08A2

VR-BN	0A8E	VR-DATA	0803	WAIT-1	0BEE	WAIT-2	0BEF

WR-BLK	16AF	WR-BYT-1	16C4	WR-BYT-2	16C8	WR-BYT-3	16CD

WR-F-TEST	1BAB	WR-RECD	12DA	WR-S-1	1FA1	WR-S-2	1FB3

WR-S-3	1FBB	WR-SECTOR	1F85	WRITE-PRC	12EE	WT-SC-E	0FD3

WT-SCOUT	0FD6	WT-SYNC	0FED	WTKEY	1ED2

�APPENDIX 11

What to do if you have an unknown ROM

If you should find that your Interface 1 contains a ROM which differs from both the edition 1 and the edition 2 Shadow ROM, then the code to implement the extended BASIC commands that is given in this book will not work. This is because the code that we have given contains a number of calls to routines in the Shadow ROM, which perform a number of useful tasks, such as selecting Microdrives, reading a sector of tape, displaying hexadecimal numbers on the screen, etc. Many of these routines are at different locations in the first two editions of the ROM, and presumably they would be different again in any future ROMs.

This does not, however mean that it is not possible for you to add the expanded BASIC commands to your machine. The code that we have given is still quite correct, but the calls it makes to the ROM are no longer accurate. The solution, then is to add to the extended BASIC commands routines of your own which have the same names as the ROM routines, and will perform the same functions. This doesn't mean that you'll have to write all these routines - all the code you need is contained in the Shadow ROM disassembly given earlier in this book. Simply find the routine you need in the Shadow ROM disassembly, and copy it into your program. Consider the following example:

The extended BASIC command '*L n' includes the following code:

		LD	H,B	;move it into HL

		LD	L,C

	AGAIN	LD	A,H	;display high byte of address in hex

		CALL	DISP-HEX

		LD	A,L	;display low byte

This wont work as it stands, as it includes a call to the Shadow ROM routine DISP-HEX, and the address given for DISP-HEX in the table of EQU statements will not be correct. What you should do to make this work is to remove the entry for DISP-HEX from the EQU table, and then look up the entry for DISP-HEX in the alphabetical list of labels (Appendix 2.). According to this, the DISP-HEX routine is at 1E87H. Look this up in the disassembly, and add the routine you find (shown below) to the end of your program.

	DISP-HEX	PUSH	AF

		RRA

		RRA

		RRA

		RRA

		CALL	DISP-NIB

		POP	AF

	DISP-NIB	AND	0FH

		CP	0AH

		JR	C,CONV-1

		ADD	A,7

	CONV-1	ADD	A,30H

		CALL	DISP-CH

		RET

Note, however, that this routine makes its own call to another Shadow ROM routine, DISP-CH, which you will also have to add to your code. DISP-CH is located at 1EA9 in the disassembly, and is as follows:

	DISP-CH	PUSH	HL

		PUSH	DE

		PUSH	BC

		PUSH	AF

		EXX

		PUSH	HL

		PUSH	DE

		PUSH	BC

		PUSH	AF

		LD	HL,(CURCHL)

		PUSH	HL

		PUSH	AF

		LD	A,2

		RST	CALBAS

		DEFW	1601H

		POP	AF

		RST	CALBAS

		DEFW	10H

		POP	HL

		LD	(CURCHL),A

		POP	AF

		POP	BC

		POP	DE

		POP	HL

		EXX

		POP	AF

		POP	BC

		POP	DE

		POP	HL

		RET

Doing the same thing with all the other Shadow ROM calls should make it possible for you to run all the extended BASIC commands. Note that the program, as it stands, fits into the very highest part of memory, with no room above it to spare. The code you will be adding will make the extended commands somewhat longer. Because of this, you will have to ORG your program to an earlier location, in order for it to fit into memory. Remember that when you initialise the new commands from BASIC, you should no longer use

	RANDOMISE USR 63744

but instead use

	RANDOMISE USR x

where x is the location at which your assembler program is ORGed.

