

Beginners All-purpose Symbolic Instruction Code - to give BASIC its

full title - is, as the name declares, a language for the computer

novice. If you have learnt BASIC, then you have served your programming

apprenticeship. You should now want to move on to a language which will

allow your programming talents freer and fuller development. You are

probably already aware that BASIC has distinct limitations, and that those

limitations become both more apparent and more inhibiting the more progress

you make. To construct a large program in BASIC will inevitably involve

you in a bewildering and ungainly maze of GOTOs and GOSUBs; the program

will run rather slowly and it will take up too much memory space.

No one who knows will regard BASIC as a particularly good programming

language. It caught on early in the development of the Personal Computer

and has held its place more through habit than because of any inherent

 qualities as a computer language.

But even if you feel that, knowing BASIC, you wish to go beyond it there

are likely to be questions that will concern you. You may feel that you

would rather stick with and build on the language you already know. You may

be concerned that to convert to a better language means to convect to a

harder language. You will certainly want to know, if you are to learn another

language, which will be the best.

To take these points in order, there is little future if you wish to

expand your programming, in sticking with BASIC. Sooner or later BASIC will

hinder your progress, then it will stop it dead.

The second point is that the quality of a computer language is not a function of

its difficulty. Clarity and simplicity are cardinal virtues in good programming, and

those will flow more naturally from a language

- 2 -

which is itself clear and simple.

The question of which language to choose for Personal Computer
applications may seem to be a more complex one. But in fact it is not.
There is one language which stands out as being a model of simplicity,
clarity and the means through which to acquire the technique of elegant
programming. It is also very fast, memory efficient, and emminently
suitable for microcomputers.

That language is FORTH.

FORTH offers many advantages. It is no harder than BASIC to learn,
but it imposes none of the contrictions which BASIC does. Its greatest
virtue for the computer owner who wishes to aquire enhanced programming
skills is that it enables him or her to begin from readily learnable
words and then advance step by step to programs of greater complexity -
building word on word. There is no limit to how far FORTH can take you -
but it will let you proceed securely at your own speed.

Learn FORTH, and you will find that your programming will take off.
It provides a fascinating, addictive and infinitely extensible means to
learn about real computing.

What follows will aid you in making the step up from BASIC to
FORTH. A small step in terms of effort; an enormous step for your
programming future.

Go from BASIC to FORTH and you won't go back again.

BASIC TO FORTH BRIDGE

If you are a person who is well-versed in BASIC and you have just

come across the language FORTH, you may well want to know if you can

translate your favourite programs into FORTH. The short answer is 'yes',

and this booklet will help you to do it. Although it has been writted

with the JUPITER ACE in mind, any remarks about FORTH should apply to other

machines as well.

Throughout this text, BASIC and FORTH words are underlined.
FORTH, like BASIC, has a vocabulary of words which you can either

type in as commands or group together to make a program. FORTH has a

word VLIST (short for vocabulary list) which prints the dictionary

(that is all the words in the vocabulary) on the screen. In BASIC, you

form a program by taking a collection of words and putting a line number

in front. In FORTH, however, you define new words which then become part

of the dictionary, just like the words already there in ROM. Like any of

the original words, you can execute a new word by typing it in at the key-

board and you can use it in the definitions of other new words. You can

think of FORTH words as being like subroutines and your final program as

being a list of GOSUB statements- but they don't slow down your program as

subroutines do. It is easy to debug programs written in this way because

you can test each word separately to check that it does exactly what you

want.

The most common way of making a new word is the colon definition.

Here is a very simple word which prints a message on the screen.

: MESSAGE

CLS ." This is the Jupiter Ace " ;

- 2 -

The colon at the start says the next word is the name of a new word to be

compiled into the dictionary and that everything following, as far as

the semicolon, is the instructions to be executed when you use the new

word. Here the name of the new word is MESSAGE and the instructions are

CLS which, as in BASIC, clears the screen and ." (pronounced 'dot quote')

which says 'print the following characters up to " on the screen'. When

you type in MESSAGE it will clear the screen and print_

This is the Jupiter Ace
at the top. It will also print 'OK' afterwards to show that it has executed

your commands without any problems. VLIST will now show that MESSAGE has

been added to the dictionary. It also shows :, CLS, ." and ; which are all

FORTH words in the Ace's ROM.

You can write the same thing in BASIC, like .this

10 CLS

20 PRINT "This isn't the Jupiter Ace"
and you can execute it by saying RUN, or RUN 10, or
GOTO 10. If you want to use it more than once, you can add

30 RETURN

and say GOSUB 10 to execute it. Some versions of BASIC allow you to put

more than one statement in a line, in which case you would probably write

10 CLS : PRINT "This isn't the Jupiter Ace" : RETURN

One of the advantages of the word MESSAGE over the set of line 10 -

30 is that MESSAGE is an English word and can convey an idea of what the

word actually does - it prints a message. GOSUB 10 doesn't mean anything

in English, so you either have to remember what it does or list it. Putting

in a comment, e.g.

5 REM message

helps you recognise what it does from the listing, but not when you are

- 3 -

referring to it by a line number. You can put comments in FORTH words,

too, by putting the text inside parentheses - (is a FORTH word that

says 'ignore what follows till you come to)'.

You can list any word you have defined, just as you can list any

part of a BASIC program.

LIST MESSAGE

will write

: MESSAGE

CLS

." This is the Jupiter Ace"
;

on the screen
One feature of the Ace which is not found in most implementations

of FORTH is that you can edit words that you have already compiled in

the dictionary. This is not different from editing in BASIC, where you

can change your program line by line, but it is unusual for FORTH. LIST

also is found only on the Ace.

The next important feature of FORTH is the way it handles numbers.

When you type in a number, it is put on the stack. The stack is like a

pile of cards with the numbers written on them. You can put more cards

on top of the pile or take them away, and the last ones put on are

normally the first ones to go. Almost all computer languages use a

stack, but it is often hidden from the programmer. (In fact, FORTH has

two stacks, called the data stack and the return stack. The data stack

is the one with your numbers on it; the return stack is used by the

machine, although there are a few words which allow you to take advantage

of what the Ace does with the return stack.)

- 4 -

In FORTH, most words communicate via the (data) stack. They take
their operands off the stack and leave their results on it. Having a
stack for numbers makes it very convenient for the arithmetic words to
use reverse polish or postfix notation (used on most Hewlett Packard
calculators). This means that the operators go after the operands.
BASIC uses infix notation. Instead of writing the operators in between
the operands,

2+3

in FORTH you would say

2 3 +

2 and 3 are both numbers and so are put on the stack and + is a FORTH
word which takes two numbers off the stack and puts back their sum, in
this case 5. This is just like a recipe where you list the ingredients
and then put the instructions. It may seem strange to expect you to
think about arithmetic in a different way - after all why can't the
computer do it for you? But it does have its benefits. For instance,
you don't need any parantheses in your calculations because there is
never any ambiguity about which operation to do first. The operator
just takes the operands it needs off the stack and puts the results back
afterwards. So (2+4)*3 becomes 2 4 + * in postfix notation.

There is a very common way of showing what words do to the stack.
You list the operands that the word requires on the stack starting with
the one lowest down and ending with the top. So with +, this is

(n,m - n+m)

operands – result

A word can have any number of operands and leave any number of

results. This makes it very easy to define your own functions. You
don't have to declare a list of variables, you just write the definition

- 5 -

bearing in mind that the numbers you want will be on the stack. e.g.

to define a function which squares a number, in BASIC you would say

 DEF FN s(x)=x*x : REM x squared

in FORTH, this becomes

: SQUARE

(n - n squared) DUP * ;

DUP (n - n,n) makes a copy of the top number on the stack and puts that

on the stack as well. FORTH has seven other stack-manipulation words for

getting the numbers into the order you want. They are

?DUP duplicates the top of the stack if it is non-zero.

DROP drops the top number from the stack.

OVER makes a copy of the second number down. •
PICK makes a copy of a given number down.

ROLL moves a given number down to the top.

ROT moves the third number down to the top.
SWAP swaps the top two numbers.

* (n - n,n*m) takes the top two numbers of the stack and puts back their

product.

Conventionally, FORTH works only with integers, usually two bytes

long. There is also same double-length arithmetic which uses numbers four

bytes long. With many programs, it is very easy to scale all the numbers

up to integers for the calculations and then scale them back again. For

instance, if you were dealing with money you would work in pence and convert

back to pounds afterwards.

However, the Ace can also work in decimals (with or without an exponent).

It recognises them when you type in because you put a decimal point in. They

are then put on the stack as three binary coded

- 6 -

decimal plus one byte for the sign and exponent. They have different

arithmetic words (the ordinary arithmetic words with 'F' - for floating

point - in front) to deal with the different format.

- 7 -

BASIC FORTH

ABS ABS

AND AND This is a bitwise Boolean
AND (BASIC varies) so, e.g.
 42 23 AND
leaves 2 on the stack.

ASCII (CODE in Sinclair BASIC) ASCII

AT AT The screen on the Ace is 23

rows by 32 columns.

ATN Not in FORTH, although it can
be defined using series.

BEEP (Not in all BASICs) BEEP Emits a sound via the Ace's

loudspeaker.

BIN Use BASE to change the base in

which the Ace inputs and prints
out numbers to any value you

want. By setting it to 2, you

can input numbers in binary.
CHR$ EMIT Prints out the character whose

ASCII value is on the stack.

e.g. PRINT CHR$ 32 or 32 EMIT prints a space

CLS CLS
COS Not in FORTH, but the Ace manual

gives a series definition of

cosine.

DATA see page 20
DEF FN Functions are defined as words

(see page 5 of the introduction).

- 8 -

BASIC FORTH
e.g.

100 DEF FN S(M,S)=60*M+S: : SECONDS

REM time in seconds (mns, secs - secs) SWAP
60 * +

;

This is called by FN S (1,49) 1 49 SECONDS

DIM See section on arrays

on page 19

DRAW Expalined in the Ace manual
FN See DEF FN
FOR n= x TO y y+1 x DOLOOP

NEXT

FOR n = x TO y STEP z y+1 x DO z +LOOP

NEXT Notice how in FORTH, the limit
of the loop is one more than in
BASIC. This means that if you
want to execute the loop n times
starting at x then the limit is
x+n, but in BASIC it is x+n-1.

e.g.
10 REM character set : CHARS
20 FOR n = 0 TO 255 256 0
30 PRINT CHR$ n; DO I EMIT

40 NEXT M LOOP

;
The word I copies the current value of
the loop counter to the stack, then EMIT
prints the

- 9 -

BASIC FORTH

character with that ASCII value.

GOSUB Subroutines are replaced by words in
FORTH. To call one, you type in its
name (see introduction).

GOTO FORTH doesn't have explicit GOTO
statements but several constructions
have them implicitly. The most
important is
IF ... ELSE ... THEN - see IF.

The following also contain GOTO's
BEGIN ... n UNTIL which repeats
until n is non-zero.

BEGIN...n WHILE ... REPEAT which
repeats while n is non-zero.
DO ... LOOP and

DO ... +LOOP - see FOR
IF ... THEN IF ... ELSE ... THEN

IF takes a number (condition) off
the stack and if it is non-zero
(true) it executes the part
between IF and ELSE and then jumps
to THEN, otherwise if the condition
is zero (false) it jumps to ELSE and
executes the ELSE ... THEN part.
You can omit ELSE when there is

- 10 -

BASIC FORTH
nothing to be done if the
condition is false.
Notice how THEN doesn't come in
the same place as in BASIC. The
way to think of it in FORTH is
if the condition is true, do
something THEN get on with the
rest of the program.

e.g.

10 REM balance : BALANCE

20 PRINT ABS (bal); (balance -)
30 IF bal >=0 THEN GOTO 100 DUP ABS . 0
35 REM balance negative IF
40 PRINT "debit" (if balance negative)
50 GOTO 120 ." debit"

100 REM balance positive ELSE
110 PRINT "credit" (if balance positive)

120 RETURN ." credit"
THEN
;

IN IN Inputs a data byte from an

input/output port.

INKEY$ INKEY Reads the keyboard and puts 0
on the stack if no key (or
more than one key) was pressed,
otherwise the ASCII code of the
key.

- 11 -
BASIC FORTH
INPUT FORTH does not have one word

 which translates INPUT. Instead

 there are several words which cover all

 the different uses of INPUT.

QUERY clears the input buffer then waits

 for you to type in things.

RETYPE waits for you to type in but doesn't

clear the input buffer first (so

you can edit what's there).

WORD takes text out of the input buffer up

as far as an ASCII delimitor.

NUMBER takes a number out of the input

 buffer.

LINE interprets the input buffer as a

line of FORTH words.

INT INT converts a 4 byte floating point

number to a single length integer.

LET FORTH has variables just as BASIC

does but you have to declare them

before using them (like DIM and

arrays). The word which does this

is....

VARIABLE which puts the variable name in

the dictionary along with space

for a 2-byte number.

e.g. 0 VARIABLE SCORE
Sets up a variable called 'SCORE'

- 12 -

BASIC FORTH

and initialises its value to zero.

You can put the current value of

the variable on the stack using

the word @ (pronounced 'Fetch')

e.g.

SCORE @

puts 0 on the stack.
You update its value with the

word ! (pronounced 'store').

e.g.
100 SCORE !

makes 100 the value in STORE.
See also the section on arrays
(page 19)for use of the FORTH
word CREATE.

LIST LIST Lists a word you have defined in
terms of its component words.

LOAD LOAD loads a dictionary file from
cassette tape and appends it to
the dictionary

BLOAD loads a bytes file from tape to

anywhere in RAM that you specify
NEW 0 CALL clears out the Ace as though you

had just turned it on. CALL
executes the machine code starting
at the address on the stack, so
0 CALL is what the CPU does when
it is switched on.

BASIC
NEXT See FOR

OR
OUT

PAUSE

- 13 -

0= This takes the top number off
the stack and leaves 1 if it
was zero and 0 otherwise. Some
versions of FORTH also have a
word NOT which is identical to
0=.

NOT

FORTH
LOOP
+LOOP

OR Bitwise Boolean value.
OUT out puts a byte to an I/O port.

There isn't a word PAUSE in
FORTH, but it is very easy to
write one. The simplest is
: PAUSE

0 DO LOOP
;

which is just an empty
DO...LOOP. If you say

1000 PAUSE
if executes the DO LOOP 1000
times.
If you want a more accurately
timed pause, you can use the
system variable which counts how
long, (in TV frames) the Ace has
been switched on, as follows
: PAUSE

- 14-

(n-)

0 15403 ! (set counter to 0)

BEGIN

DUP 15403 @ =
INKEY OR

UNTIL
DROP

;

This version pauses until either
it reaches the frame count on
the stack or you press a key.

C@ Fetches the byte stored in the
address on the stack. C@ stands
for 'character fetch' as it was
designed for reading 1-byte ASCII
codes instead of 2-bytes variables

@ (see LET) fetches the value stored
in the 2 bytes starting at the
address on the stack.

C! Stores the second number on the
 stack in the byte at the address at

the top of the stack.
! Stores the second number on the
 stack in the pair of bytes starting

at the address at the top of the
stack. (See LET too.)

BASIC FORTH

PEEK

POKE

- 15 -

PRINT

e.g.
PRINT "Hello"

RANDOIZE and RND

: RND

(n - pseudo random no. between
0 and n -1)
SEEDON U* SWAP DROP

;

: RAND
(value for seed -)

 ?DUP 0=

IF

. Prints the number at the top of

the stack on the screen.
." Prints the subsequent characters

on the screen. See page 1

." Hello"

EMIT See CHR$

TYPE Prints out a given number of bytes
starting at a given address as
ASCII characters.
FORTH doesn't have its own random
number generator, but here is one
way of making your own.
0 VARIABLE SEED

: SEEDON

(- next value of seed)

SEED @ 75 U* 75 0

D+ OVER OVER U< - -

1- DUP SEED !
;

- 16 -

BASIC FORTH

15403 @ SWAP THEN
SEED !

;

RND and RAND work just like their
BASIC counterparts.

(Treats text up to) as a comment
 and ignores it.

RESTORE See page 20
RETURN
RND See RANDOMIZE

There is no direct equivalent in
FORTH - you just name the word you want
to run.

SAVE Saves the current dictionary as

a dictionary file on cassette tape.

BSAVE Saves a specified number of bytes
starting from a specified address as a
bytes file on tape.
The following word takes a number
from the stack and leaves -1 if it
is negative, 0 if it is zero and +1
if it is positive.
: SGN

DUP 0<

SWAP 0> -
;

REM

Not needed in FORTH

RUN

SAVE

SGN

- 17 -

BASIC FORTH

SIN Not in FORTH, but the Ace manual
gives a series definition of sine.

SQR The following word SQR calculates
a square root using the Newton-
Raphson method.
: 2OVER

(fl, f2 - fl, f2, fl)

4 PICK 4 PICK
;

: 2SWAP

(fl, f2 - f2, fl)
 4 ROLL 4 ROLL
;

: SQR

(f - square root of f)

1. 10 0

DO

2OVER 2OVER F/ F+ .5 F*

LOOP

2SWAP 2DROP
;

USR CALL

- 18-

VERIFY VERIFY Checks a dictionary file on

 cassette tape against the

 dictionary in RAM.

BVERIFY Check a bytes file on tape

 against a given number of bytes

 starting at a given address.

- 19-

Arrays

FORTH doesn't have any array handling words of its own but it

does allow you to set aide space in the dictionary for your own data.

There is a word CREATE which puts a word name in the dictionary but

nothing else. So

CREATE ROW
makes a word called ROW and when you type in 'ROW' it puts on the stack

the address of the first byte in the dictionary after the definition of

ROW. This may seem pointless, but there is another FORTH word, ALLOT

which tags a specified number of bytes onto the end of the dictionary.

This gives you a data field for your empty name, so if you now say

 6 ALLOT

you have made a 1-d array called ROW which is 6 bytes long.

 3 5 ROW + 1- C!

stores 3 in the 5th element of ROW and

 5 ROW + 1- C@
reads it back again. (You need the 1- because the 1st element is at

 ROW+0.)

A two dimensional array is just a row of elements but the elements

themselves are rows so you have to allot the number of rows times the

length of each row (the number of columns). This is exactly the way

your BASIC computer will do it, but it doesn't let on.

The Jupiter Ace manual has some words for setting up your own 2-d

arrays without having to work out for yourself how many bytes to set

aside. They also do their own error checking when you store or read an

element. The words themselves are simple enough but the FORTH goes beyond

the scope of this pamphlet.

Here is a word which will set up a 2-d array of dimensions

- 20 -

: 2DIM CREATE DIM C, * ALLOT ;

You use it by typing, e.g.

2 3 2DIM ARRAY

It puts the name ARRAY in the dictionary and sets aside 7 bytes after it
(1 for the length of the rows - or number of columns - and 6 for the data).

READ, DATA AND RESTORE

FORTH does not have READ, DATA and RESTORE (although you could
mimic them if you wanted) but it does have something very much simpler
which does just as well, namely the stack. Instead of a DATA statement,
you have a word which puts all the data on the stack. e.g.

: DATA
5 0 7 2 1 4

;

In BASIC this would be 110 DATA 5,0,7,2,1,4

One of the main uses for R, D & R is for initialising arrays, so
you can now define a word which will set up ROW (from the section on
arrays)

: INIT

DATA

-1 5 DO

ROW I + C!

-1 +LOOP

;

or in BASIC

120 FOR I = 1 to 6
130 READ R(I)

140 NEXT I

- 21 -

 Penny Vickers 1983 Jupiter Cantab Ltd

Cheshunt Building

Bateman Street
Cambridge CB2 1TZ
Tel: (0223) 313479

This starts at the end of the row and moves backwards along it in the

data. (It goes backwards because the last piece of data written is

the first one read.) If you want to reinitialise the row you don't

need RESTORE, you just type in INIT.

Strings
FORTH has a word TYPE which types out a number of characters from

a given address. So an easy way of referring to a string of characters

is the address of the start of the string and the length. The Ace manual

contains words for setting up strings in this manner and also for string

and comparisons.

You can have string arrays by making an array containing ASCII

codes. If you want a word to print a string you can use ." (see

introduction and PRINT).

--

OCRed and scanned with Omnipage Pro 15 September 2005 Jupiter Preservation Project
The Jupiter Ace Archive Project

http://www.jupiter-ace.co.uk/

