
15/9/06

So having the 8 to 16K mod working and able to have upto 16 exta character sets got me

thinking, with just 12 extra character sets i'd have enough different characters that would allow

you to put a different character at each location on the screen, thus true hi-res using a slightly

unusual memory layout, all i would have to do is fill the screem with 12 complete character sets

i.e chars 0 to 31 on line 0, chars 32 to 63 on line 1, then chars 0 to 31 again on line 2 and so on.

Now the tricky bit. how to hook the video display routine so that the I register is changed evey 2

lines or 16 scanlines. Now NOT been a great understander of the ZX81 video display routines i

though i'd take a look how WRX works and have based my routine on Wilf's Thus instead of

filling D-file with a load of characters i'm using a dummy sequence of 32 bytes BUT instead of

just 1 buffer, i have 2, and instead of just been 32 Nop's they are 00h,01h,02h......1Fh,RET and

20h,21h,22h.......3Fh,RET each buffer called 8 times, 2 complete character lines, and then the I

register is incremented by 2 and then we return to the first buffer for another 2 complete lines

and do this 12 times over and ARX816 is born. The upshot..it works but because my routine has

to be sycn'd with the ULA's line counter there's quite a big delay at the begining so this will

slow basic down a bit, about 7% of available time for program excution is lost.

0001 4082 .org 16514

0002 4082

0003 4082 ;this is hi res routine based on

 ;wrx16, except it uses 8-16K above rom

0004 4082 ;however this ram is addressed like rom,

 ;during refresh, ie. Bits 0-2 are the line

 ;ula row counter, bits 3-8 are the char from

 ;d-file/my dummy d-file. Whats more is this

 ;Ram can be used as Chr$ generator requiring

 ;only the I register to change. But can

 ;equally be used for code execution.

0005 4082

0006 4082

0007 4082

 lbuf1

0008 4082 0001020304050607 .byte 00,01,02,03,04,05,06,07,

 08,09,10,11,12,13,14,15

0008 4088 08090A0B0C0D0E0F

0009 4092 1011121314151617 .byte 16,17,18,19,20,21,22,23,

 24,25,26,27,28,29,30,31

0009 4098 18191A1B1C1D1E1F

0010 40A2 C9 ret

0011 40A3

0012 40A3

 lbuf2

0013 40A3 2021222324252627 .byte

 32,33,34,35,36,37,38,39,

 40,41,42,43,44,45,46,47

0013 40A9 28292A2B2C2D2E2F

0014 40B3 3031323334353637 .byte

 48,49,50,51,52,53,54,55,

 56,57,58,59,60,61,62,63

0014 40B9 38393A3B3C3D3E3F

0015 40C3 C9 ret

 ;because of the way this ram is addressed during refresh

 ;I need 2 dummy d-file lines, the first to do even character

 ;rows, the second to do odd character rows. So basically the

 ;h-file is laid out like 12 consecutive character maps.

0016 40C4

0017 40C4 ;each buffer is called 8 times as video bytes

0018 40C4 ;both repeated 12 times in total,

 ;(8+8)*12=192 scanlines.

0019 40C4

0020 40C4

 ;this is the main loop when its time to

 ;display the video because I need to sync

 ;my lines with the ULA row counter

 ;the effect is to slow down basic execution

 ;a bit, not sure how much but its

 ;effectively 8 scanlline

0021 40C4

 arx

0022 40C4 06 78 ld b,120 ;between here

0023 40C6 10 FE delay djnz delay ;and the first

0024 40C8 03 inc bc ;execution of

0025 40C9 00 NOP ;the lbuf bytes

0026 40CA ;total delay is

0027 40CA 16 08 ld d,8 ;equal to 8 scanlines

0028 40CC 06 0C ld b,12

0029 40CE 4A ld c,d ;set up initial regs

0030 40CF 3E 20 ld a,020h

0031 40D1 ED 47 ld i,a

0032 40D3

0033 40D3

0034 40D3 arx1

0035 40D3 CD 82 C0 call lbuf1+8000h

 ;17 17 t states so far

0036 40D6 00 nop

 ;4 159 t states so far (138 from ;lbuf1) timing

0037 40D7

0038 40D7 0D dec c

 ;4 163 t states

0039 40D8 CA E2 40 jp z,arx2 ;use conditinal jp uses

 ;10 t states either way

 ;10 173 t states

0040 40DB ED 57 ld a,I ;this way if not 8

 ;scanlines

 ;9 182 t states timing

0041 40DD ED 57 ld a,I

 ;9 191 t states timing

0042 40DF 00 nop

 ;4 195 t states timing

0043 40E0 18 F1 jr arx1

 ;12 207 t states !!!

 ;this is the end of the first loop

 ;this route is taken if 8 scanlines

 ;have been completed.

0044 40E2

0045 40E2 arx2

0046 40E2 ED 57 ld a,I

 ;9 182 t states timing

0047 40E4 03 inc bc

 ;6 188 t states timing

 ;doesn't matter about c, gets reloaded

0048 40E5 03 inc bc

 ;6 194 t states timing

0049 40E6 4A ld c,d

 ;4 198 t states

0050 40E7 ED 57 ld a,i

 ;9 207 t states !!!

0051 40E9

 ;the start of the second inner loop

0052 40E9 arx3

0053 40E9 CD A3 C0 call lbuf2+8000h

 ;17 17 t states ; fire the second row

0054 40EC 0D dec c

 ;4 159 t states (138 from lbuf2)

0055 40ED CA F8 40 jp z,arx4

 ;10 169 t states

0056 40F0 ED 57 ld a,I

 ;9 178 t states timing

 ;this branch if not 8 scan lines

0057 40F2 ED 57 ld a,I

 ;9 187 t states timing

0058 40F4 3C inc a

 ;4 191 t states timing,

 ;for the most part

0059 40F5 3C inc a

 ;4 195 t states timing,

 ;but also increments A by 2

 ;ready for the other branch

0060 40F6 18 F1 jr arx3

 ;12 207 t states !!!

0061 40F8

0062 40F8 arx4

0063 40F8 4A ld c,d

 ;4 173 t states reset scan line counter

0064 40F9 ED 47 ld i,a

 ;9 182 t states set i to next 512 byte block#

0065 40FB 7E ld a,(hl)

 ;7 189 t states timing

0066 40FC 00 nop

 ;4 193 t states timing

0067 40FD 05 dec b

 ;4 197 t states

0068 40FE C2 D3 40 jp nz,arx1

 ;10 207 t states !!!

;the following section is virtually the same as ;wilfs wrx16

0069 4101 DD 21 07 41 ld ix,arx5

0070 4105 18 07 jr arx6

0071 4107

0072 4107 CD 20 02 arx5 call 0220h

0073 410A DD 21 C4 40 ld ix,arx

0074 410E

0075 410E

0076 410E

0077 410E 3A 28 40 arx6 LD A,(4028h) ;33 or 19 blank lines in bottom MARGIN

0078 4111 D6 08 SUB 8 ;reduce by 8 scan lines

0079 4113 C3 9E 02 JP 029Eh ;start NMI, POP registers and RETURN

0080 4116

0081 4116

0082 4116

0083 4116 stop

;STOP hires and return to normal, this is the same as wrx16

0084 4116 21 81 02 ld hl,0281h ;pointer to rom video routine

0085 4119 3E 1E ld a,1Eh ;rom pattern table base address (1E00)

0086 411B ED 47 ld i,a ;stick it in the I register

0087 411D 18 03 jr sync

0088 411F

0089 411F start

;Starts the hires video

0090 411F 21 C4 40 ld hl,arx ;pointer to the hires video routine

0091 4122

0092 4122 sync ;used by START and STOP to smoothly change video mode

0093 4122 E5 push hl

*** ;this check gets stuck

*** DO NOT START OR STOP IN FAST MODE ***

*** ;if running in fast mode

0094 4123 21 34 40 ld hl,4034h ;FRAMES counter

0095 4126 7E ld a,(hl) ;get old FRAMES

0096 4127 sloop

0097 4127 BE cp (hl) ;compare to new FRAMES

0098 4128 28 FD jr z,sloop ;exit after a change is detected

0099 412A DD E1 pop ix

0100 412C C9 ret

0101 412D

0102 412D .end

the above code is assuming that the H-file is located in the first 6K of the 8-16K region and is

mapped thus:- first byte scanline 0 addess 2000h, second byte scanline 0 address 2008h ect.

maybe a better way to show it.

scanline 0> 2000h 2008h 2010h 2018h 20F8h

scanline 1> 2001h 2009h 2011h 2019h 20F9h

.

.

scanline 7> 2007h 200Fh 2017h 201Fh 20FFh

scanline 8> 2100h 2108h 2110h 2118h 21F8h

.

.

scanline 190> 3706h 370Eh 3716h 371Eh 37FEh

scanline 191> 3707h 370Fh 3717h 371Fh 37FFh

So with minimal extra hardware and a little programming i get a 3 function hardware upgrade :)

UDG upto 16 pages, True hi-res, extra memory for code or storage. and as a bonus as well as

working on a real zx81 (issue 1 has not been tested on any other as i haven't got another) it

works on Eightyone version 0.42(Test Z) with hi-res disabled character gen set to sinclair, and

ram 8-16k checked, it appears that without WRX enabled the ram is addressed with the alternate

address lines supplied by the ula, as in my real ZX81 mod. If you read this far you might be

wondering why i bothered since as i have static ram in my ZX81 i could have just added the

resistor to the /wr line and used WRX, but that would be no fun and i have learnt a heck of alot

about the video routines, and timing this way. Oh yeah i get 16K available for my programs too

:) will be adding a sample program to my programs section soon. (24/9/06, the program has been

added to programs section)

