Quad 8-Bit, 65 MSPS
Serial LVDS 3V A/D Converter

FEATURES

- Four ADCs in one package
- Serial LVDS digital output data rates up to 520 Mbps (ANSF 644)
- Data clock output provided
- $\operatorname{SNR}=47 \mathrm{~dB}$ (to Nyquist)
- Excellent Linearity:

$$
\begin{aligned}
& \text { DNL }= \pm 0.25 \text { LSB (Typical) } \\
& \text { INL }= \pm 0.5 \text { LSB (Typical) }
\end{aligned}
$$

- 400 MHz full power analog bandwidth
- Power dissipation $=112 \mathrm{~mW}$ Core ADC Power
per channel at 65 MSPS
- $1 \mathrm{Vpp}-2 \mathrm{Vpp}$ input voltage range
- +3.0 V supply operation
- Power down mode

APPLICATIONS

- Tape drives
- Medical imaging

PRODUCT DESCRIPTION

The AD9289 is a quad 8-bit, 65 MSPS analog-to-digital converter with an on-chip track-and-hold circuit and is designed for low cost, low power, small size and ease of use. The product operates up to 65 MSPS conversion rate and is optimized for outstanding dynamic performance where a small package size is critical.

The ADC requires a single +3 V power supply and an LVDS compatible sample rate clock for full performance operation. No external reference or driver components are required for many applications. A separate output power supply pin supports LVDS compatible serial digital output levels.

The ADC automatically multiplies up the sample rate clock for the appropriate LVDS serial data rate. An FCO trigger is provided to signal a new output byte. Power down is supported, and the ADC consumes less than 10 mW when enabled.

Fabricated on an advanced CMOS process, the AD9289 is available in a 64 -ball mini-BGA package (64 CSP_BGA) specified over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Four analog-to-digital converters are contained in one small, space saving package.
2. A Data Clock Out (DCO) is provided which operates up to 260 MHz .
3. The outputs of each ADC are serialized and provided on the rising and falling edge of DCO). Output data rates up to 520 Mbps (8 bits x 65 MSPS) are available.
4. The AD9289 operates from a single 3V power supply.
5. The clock duty cycle stabilizer maintains performance over a wide range of input clock duty cycles

Figure 2. Measured FFT

TABLE OF CONTENTS

AD9289—Specifications .. 3

DIGITAL SPECIFICATIONS ... 4

AC SPECIFICATIONS.. 4

SWITCHING SPECIFICATIONS ... 5

EXPLANATION OF TEST LEVELS .. 5
Absolute Maximum Ratings .. 6
Definitions ... 7

Theory of Operation .. 9
Clock Input... 9

Analog Inputs .. 9
\qquad
Voltage Reference. 9
Internal Reference Connection 10
External Reference Operation 10
Digital Outputs 11
Timing 11
PLL LOCK Output 11
CML Pin 11
Overange 11
Pin Configurations 13
Timing Diagram 14
Ordering Guide 16

REVISION HISTORY

Revision PrA: Initial Version
Revision PrB: Updated specifications
Revision PrC: Added application section
Revision PrD: Revised block diagram, added LOCK/ output to timing diagram, added offset and gain matching definitions, updated Theory of Operation

Revision PrE: Updated timing diagram and PLL description
Revision PrF: Updated Timing Specs, Pin Function Description (Added DNC pins), Added Pin Configuration Diagram and Package Outline Revision PrG: Added DCR pin info, updated lvdsbias resistor value,

Revision H: Updated reference description, Removed S3, Added scope plot, Added FFT, Updated Tpd, Tcpd, Tmsb, Power, Updated LVDSBIAS Resistor value, Min Encode \rightarrow 20MSPS

Revision I: Updated Power Supply Range, Added thermal impedance number,
Revision J: Added CML description, Modified Timing Diagram, Changed MSB naming to FCO,Removed S2, Modified Tpd,

AD9289- SPECIFICATIONS ${ }^{1}$

AVDD $=3.0 \mathrm{~V}$, DRVDD $=3.0 \mathrm{~V}$; INT REF; DIFFERENTIAL ANALOG AND CLOCK INPUTS

Parameter		Temp	Test Level	Min	Typ	Max	Unit
RESOLUTION					8		Bits
ACCURACY	No Missing Codes	Full	VI		Guaranteed		
	Offset Matching	$25^{\circ} \mathrm{C}$	I		± 25		mV
	Gain Matching ${ }^{2}$	$25^{\circ} \mathrm{C}$	I		± 2		\% FS
	Differential Nonlinearity (DNL)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{gathered} \hline \mathrm{I} \\ \mathrm{VI} \end{gathered}$		± 0.25		$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	Integral Nonlinearity (INL)	$\begin{gathered} \hline 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{gathered} \hline \mathrm{I} \\ \mathrm{VI} \end{gathered}$		± 0.5		$\begin{aligned} & \hline \text { LSB } \\ & \text { LSB } \end{aligned}$
TEMPERATURE DRIFT	Offset Error	Full	V		± 16		ppm $/{ }^{\circ} \mathrm{C}$
	Gain Error ${ }^{2}$	Full	V		± 150		ppm $/{ }^{\circ} \mathrm{C}$
	Reference	Full	V				ppm $/{ }^{\circ} \mathrm{C}$
REFERENCE	Internal Reference Voltage	$25^{\circ} \mathrm{C}$	I		0.5		V
	Output Current	Full	V				uA
	Input Current	Full	V				uA
	Input Resistance	Full	V		7		$\mathrm{k} \Omega$
ANALOG INPUTS	Differential Input Voltage Range				1-2		Vpp
	Common Mode Voltage	Full	V		1.5		V
	Input Resistance	Full	V		tbd		k Ω
	Input Capacitance	Full	V		5		pF
	Analog Bandwidth, Full Power	Full	V		400		MHz
POWER SUPPLY	AVDD	Full	IV	2.85	3.0	3.15	V
	DRVDD	Full	IV	2.85	3.0	3.15	V
	Power Dissipation ${ }^{3}$	Full	VI		558		mW
	Power Down Dissipation	Full	VI		<10		mW
	Power Supply Rejection Ratio (PSRR)	$25^{\circ} \mathrm{C}$	I				mV / V
	IAVDD 3	Full	VI		150		mA
	DRVDD 3	Full	VI		36		mA
CROSSTALK	Crosstalk	Full	V		70		dB

Table 1

[^0]
DIGITAL SPECIFICATIONS

AVDD $=3.0 \mathrm{~V}$, DRVDD $=3.0 \mathrm{~V}$

Parameter		Temp	Test	Min	Typ	Max	Unit
CLOCK INPUTS(CLK+, CLK-)	Differential Input Voltage ${ }^{1}$	Full	IV	247			mVpp
	Input Common Mode Voltage	Full	IV		1.25		V
	Input Resistance	Full	IV				$\mathrm{k} \Omega$
	Input Capacitance	$25^{\circ} \mathrm{C}$	IV				pF
LOGIC INPUTS	Logic '1' Voltage	Full	IV	2.0			V
	Logic '0' Voltage	Full	IV			0.8	V
	Input Resistance	Full	IV		30		$\mathrm{k} \Omega$
	Input Capacitance	Full	IV		4		PF
DIGITAL OUTPUTS (LVDS Mode)	Differential Output Voltage (VOD)	Full	IV	247		454	mV
	Output Offset Voltage (V $\mathrm{V}_{\text {SS }}$)	Full	IV	1.125		1.375	V
	Output Coding	Full	IV	Twos Complement or Binary			

Table 2: Digital Specifications

AC SPECIFICATIONS ${ }^{2}$

AVDD $=3.0 \mathrm{~V}$, DRVDD $=3.0 \mathrm{~V}$; INTERNAL REF; DIFFERENTIAL ANALOG AND CLOCK INPUT, LVDS OUTPUT MODE

Parameter		Temp	Test	Min	Typ	Max	Unit
SIGNAL TO NOISE RATIO (SNR) Without Harmonics	$\mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		47.5		dB
	$\mathrm{f}_{\mathrm{IN}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dB
	$\mathrm{f}_{\mathrm{IN}}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I		47.5		dB
	$\mathrm{f}_{\mathrm{IN}}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dB
SIGNAL TO NOISE RATIO (SINAD) With Harmonics	$\mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		47		dB
	$\mathrm{f}_{\mathrm{IN}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dB
	$\mathrm{f}_{\mathrm{IN}}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I		47		dB
	$\mathrm{f}_{\mathrm{IN}}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dB
EFFECTIVE NUMBER OF BITS (ENOB)	$\mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		7.5		Bits
	$\mathrm{f}_{\mathrm{IN}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				Bits
	$\mathrm{f}_{\mathrm{IN}}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I		7.5		Bits
	$\mathrm{f}_{\mathrm{IN}}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				Bits
SPURIOUS FREE DYNAMIC RANGE (SFDR)	$\mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		62		dB
	$\mathrm{f}_{\text {IN }}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dB
	$\mathrm{f}_{\mathrm{IN}}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I		59		dB
	$\mathrm{f}_{\mathrm{IN}}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dB
SECOND AND THIRD HARMONIC DISTORTION	$\mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		62		dBc
	$\mathrm{f}_{\mathrm{IN}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dBc
	$\mathrm{f}_{\mathrm{IN}}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I		59		dBc
	$\mathrm{f}_{\mathrm{IN}}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dBc
TOTAL HARMONIC DISTORTION (THD)	$\mathrm{f}_{\mathrm{IN}}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		60		dBc
	$\mathrm{f}_{\mathrm{IN}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dBc
	$\mathrm{f}_{\mathrm{IN}}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I		58		dBc
	$\mathrm{f}_{\mathrm{IN}}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V				dBc

[^1]	Parameter	Temp	Test Level	Min	Typ	Max	Unit
TWO TONE INTERMOD DISTORTION (IMD)	$\mathrm{f}_{\mathrm{I} 1}=19 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=20 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V			dBc	
$\mathrm{f}_{\mathrm{N} 1}=x \times \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=x \times \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		dBc			

Table 3: AC Specifications

SWITCHING SPECIFICATIONS

AVDD $=3.0 \mathrm{~V}$, DRVDD $=3.0 \mathrm{~V}$; DIFFERENTIAL ENCODE INPUT

Parameter		Temp	Test Level	Min	Typ	Max	Unit
CLOCK	Maximum Clock Rate	Full	VI	65			MSPS
	Minimum Clock Rate	Full	VI			20	MSPS
	Clock Pulse Width High (t_{EH})	Full	IV	6.9			ns
	Clock Pulse Width Low (teL)	Full	IV	6.9			ns
OUTPUT PARAMETERS IN LVDS MODE	Valid Time (tv) ${ }^{1}$	Full	VI				ns
	Propagation Delay (tpD) ${ }^{1}$	Full	VI		10		ns
	MSB Propagation Delay ($\mathrm{t}_{\text {MSB }}$) ${ }^{1}$	Full	VI		10		ns
	Rise Time (t_{R}) (20\% to 80\%)	Full	V		0.5		ns
	Fall Time (t_{F}) (20\% to 80\%)	Full	V		0.5		ns
	DCO Propagation Delay (tcpi)	Full	VI		10		ns
	Data to DCO Skew (tPD - $\mathrm{t}_{\text {CPD }}$)	Full	IV		+/-100		pS
	Pipeline Latency	Full	VI		6		cycles
APERTURE	Aperture Delay (t_{A})	$25^{\circ} \mathrm{C}$	V				ps
	Aperture Uncertainty (Jitter)	$25^{\circ} \mathrm{C}$	V		<1		ps rms

Table 4: Switching Specifications

EXPLANATION OF TEST LEVELS

TEST LEVEL

I $\quad 100 \%$ production tested.

II $\quad 100 \%$ production tested at $+25^{\circ} \mathrm{C}$ and guaranteed by design and characterization at specified temperatures.

III Sample Tested Only

IV Parameter is guaranteed by design and characterization testing.

V Parameter is a typical value only.

VI
100% production tested at $+25^{\circ} \mathrm{C}$ and guaranteed by design and characterization for industrial temperature range.

[^2]ABSOLUTE MAXIMUM RATINGS

Parameter	AVDD Voltage	Rating
	DRVDD Voltage	
	Analog Input Voltage	
	Analog Input Current	
	Digital Input Voltage	
	Digital Output Current	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	VREF Input Voltage	
	Operating Temperature Range (Ambient)	
	Maximum Junction Temperature	
	Lead Temperature (Soldering, 10 sec)	$40^{\circ} \mathrm{C} / \mathrm{W}$
	Maximum Case Temperature	
	Storage Temperature Range (Ambient)	

Table 5: Absolute Maximum Ratings
Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^3]
DEFINITIONS

ANALOG BANDWIDTH

The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB .

APERTURE DELAY

The delay between the 50% point of the rising edge of the ENCODE command and the instant at which the analog input is sampled.

APERTURE UNCERTAINTY (JITTER)

The sample-to-sample variation in aperture delay.

CROSSTALK

Coupling onto one channel being driven by a low level (-40 dBFS) signal when the adjacent interfering channel is driven by a fullscale signal.

DIFFERENTIAL ANALOG INPUT RESISTANCE, DIFFERENTIAL ANALOG INPUT CAPACITANCE, AND DIFFERENTIAL ANALOG INPUT IMPEDANCE

The real and complex impedances measured at each analog input port. The resistance is measured statically and the capacitance and differential input impedances are measured with a network analyzer.

DIFFERENTIAL ANALOG INPUT VOLTAGE RANGE

The peak to peak differential voltage that must be applied to the converter to generate a full scale response. Peak differential voltage is computed by observing the voltage on a single pin and subtracting the voltage from the other pin, which is 180 degrees out of phase. Peak to peak differential is computed by rotating the inputs phase 180 degrees and taking the peak measurement again. Then the difference is computed between both peak measurements.

DIFFERENTIAL NONLINEARITY

The deviation of any code width from an ideal 1 LSB step.

EFFECTIVE NUMBER OF BITS

The effective number of bits (ENOB) is calculated from the measured SNR based on the equation:

$$
E N O B=\frac{S N R_{\text {MEASURED }}-1.76 d B}{6.02}
$$

CLOCK PULSE WIDTH/DUTY CYCLE

Pulse width high is the minimum amount of time that the Clock
pulse (CLK+) should be left in logic " 1 " state to achieve rated performance; pulse width low is the minimum time the clock pulse should be left in low state. See timing implications of changing $\mathrm{t}_{\mathrm{clk}}$ in text. At a given clock rate, these specs define an acceptable clock duty cycle.

FULL SCALE INPUT POWER

Expressed in dBm . Computed using the following equation:

$$
\text { Power } \left._{\text {Fullscale }=10 \log \left(\frac{\frac{V_{\text {Fullscale }_{\text {mss }}}^{2}}{Z_{\text {Input }}}}{.001}\right), ~\left(\frac{101}{}\right.}\right)
$$

GAIN ERROR

Gain error is the difference between the measured and ideal full scale input voltage range of the worst ADC.

GAIN MATCHING

Expressed in \%FSR. Computed using the following equation:

$$
\text { GainMatching }=\frac{F S R_{\max }-F S R_{\min }}{\left(\frac{F S R_{\max }+F S R_{\min }}{2}\right)} * 100 \%
$$

where $\mathrm{FSR}_{\text {max }}$ is the most positive gain error of the ADCs and $\mathrm{FSR}_{\text {min }}$ is the most negative gain error of the ADCs.

HARMONIC DISTORTION, SECOND

The ratio of the rms signal amplitude to the rms value of the second harmonic component, reported in dBc .

HARMONIC DISTORTION, THIRD

The ratio of the rms signal amplitude to the rms value of the third harmonic component, reported in dBc .

INTEGRAL NONLINEARITY

The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a "best straight line" determined by a least square curve fit.

MINIMUM CONVERSION RATE

The encode rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.

MAXIMUM CONVERSION RATE

The encode rate at which parametric testing is performed.

OFFSET ERROR

Offset error is the difference between the measured and ideal voltage at the analog input that produces the midscale code at the outputs. Offset error is given for the worst ADC.

OFFSET MATCHING

Expressed in mV . Computed using the following equation:

$$
\text { OffsetMatching }=O F F_{\max }-\text { OFF } F_{\min }
$$

where $\mathrm{OFF}_{\text {max }}$ is the most positive offset error and $\mathrm{OFF}_{\text {min }}$ is the most negative offset error.

OUTPUT PROPAGATION DELAY

The delay between a differential crossing of CLK+ and CLK- and the time when all output data bits are within valid logic levels.

NOISE (FOR ANY RANGE WITHIN THE ADC)

$$
V_{n o i s e}=\sqrt{Z * .001 * 10^{\left(\frac{F S_{d B m}-S N R_{d B c}-\text { Signal }_{d B F S}}{10}\right)}}
$$

Where Z is the input impedance, FS is the full scale of the device for the frequency in question, SNR is the value for the particular input level and Signal is the signal level within the ADC reported in dB below full scale. This value includes both thermal and quantization noise.

POWER SUPPLY REJECTION RATIO

The ratio of a change in input offset voltage to a change in power supply voltage.

SIGNAL-TO-NOISE-AND-DISTORTION (SINAD)

The ratio of the rms signal amplitude (set 1 dB below full scale) to the rms value of the sum of all other spectral components, including harmonics but excluding dc.

SIGNAL-TO-NOISE RATIO (WITHOUT HARMONICS)

The ratio of the rms signal amplitude (set at 1 dB below full scale) to the rms value of the sum of all other spectral components, excluding the first five harmonics and dc.

SPURIOUS-FREE DYNAMIC RANGE (SFDR)

The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic. It also may be reported in dBc (i.e., degrades as signal level is lowered) or dBFS (i.e., always related back to converter full scale).

TWO-TONE INTERMODULATION DISTORTION REJECTION

The ratio of the rms value of either input tone to the rms value of the worst third order intermodulation product; reported in dBc .

TWO-TONE SFDR

The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product. It also may be reported in dBc (i.e., degrades as signal level is lowered) or in dBFS (i.e., always relates back to converter full scale).

WORST OTHER SPUR

The ratio of the rms signal amplitude to the rms value of the worst spurious component (excluding the second and third harmonic) reported in dBc .

TRANSIENT RESPONSE TIME

Transient response time is defined as the time it takes for the ADC to reacquire the analog input after a transient from 10% above negative full scale to 10% below positive full scale.

OUT-OF-RANGE RECOVERY TIME

Out of range recovery time is the time it takes for the ADC to reacquire the analog input after a transient from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale.

THEORY OF OPERATION

Each A/D converter in the AD9289 architecture consists of a frontend sample and hold amplifier (SHA) followed by a pipelined switched capacitor A / D converter. The pipelined A / D converter is divided into two sections, consisting of six 1.5 -bit stages and a final 3-bit flash. Each stage provides sufficient overlap to correct for flash errors in the preceding stages. The quantized outputs from each stage are combined into a final 8 -bit result in the digital correction logic. The pipelined architecture permits the first stage to operate on a new input sample while the remaining stages operate on preceding samples. Sampling occurs on the rising edge of the clock.

Each stage of the pipeline, excluding the last, consists of a low resolution flash A/D connected to a switched capacitor DAC and interstage residue amplifier (MDAC). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each one of the stages to facilitate digital correction of flash errors. The last stage simply consists of a flash A/D.

The input stage contains a differential SHA that can be configured as ac- or dc-coupled in differential or single-ended modes. The output-staging block aligns the data, carries out the error correction and passes the data to the output buffers.During power-down the output buffers go into a high-impedance state.

Clock Input

Typical high-speed A/D converters use both clock edges to generate a variety of internal timing signals, and as a result may be sensitive to clock duty cycle. Commonly a $+/-5 \%$ tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD9289 contains a clock duty cycle stabilizer that retimes the non-sampling edge, providing an internal clock signal with a nominal 50% duty cycle. This allows a wide range of clock input duty cycles without affecting the performance of the AD9289. As shown in TPC XX, noise and distortion performance are nearly flat over at least a $+/-15 \%$ range of duty cycle. The stabilizer circuit can be bypassed by grounding input pin DCR. (There is an internal 22 K ohm pull-up resistor)

The duty cycle stabilizer uses a delay-locked loop (DLL) to create the non-sampling edge. As a result, any changes to the sampling frequency will require approximately 100 clock cycles to allow the DLL to acquire and lock to the new rate. High-speed, highresolution A / Ds are sensitive to the quality of the clock input. The degradation in SNR at a given full-scale input frequency $\left(\mathrm{f}_{\mathrm{A}}\right)$ due only to aperture jitter (tA) can be calculated with the following equation:
SNR degradation $=20 \times \log 10[1 / 2 \times p i \times f A \times$ $t A]$

In the equation, the rms aperture jitter, $t A$, represents the root sum square of all jitter sources, which include the clock input, analog input signal, and A/D aperture jitter specification. Undersampling applications are particularly sensitive to jitter.
The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9289. Power supplies for clock drivers should be separated from the A/D
output driver supplies to avoid modulating the clock signal with digital noise. Low jitter, crystarcontrolled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or other methods), it should be retimed by the original clock at the last step.

Analog Inputs

For best dynamic performance, the source impedances driving VIN+ and VIN- should be matched such that common-mode settling errors are symmetrical. These errors will be reduced by the common-mode rejection of the A/D.

Voltage Reference

A stable and accurate 0.5 V voltage reference is built into the AD9289. The input range can be adjusted by varying the reference voltage applied to the AD9289, using either the internal reference or an externally applied reference voltage. The input span of the A/D tracks reference voltage changes linearly. The Shared Reference mode allows the user to connect the references from the quad ADC together externally for superior gain and offset matching performance. If the ADCs are to function independently, the reference decoupling can be treated independently and can provide superior isolation between the four channels. To enable Shared Reference mode, the SHARED_REF pin must be tied high and external differential references must be externally shorted. (REFT_A must be externally shorted to REFT_B and REFB_A must be shorted to REFB_B.) Note that channels A and B are referenced to REFT_A and REFB_A and channels C and D are referenced to REFT_B and REFB_B.

Figure 3. Shared Reference Mode

Internal Reference Connection

A comparator within the AD9289 detects the potential at the SENSE pin and configures the reference into four possible states, which are summarized in Table I. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 2), setting VREF to 1 V . Connecting the SENSE pin to VREF switches the reference amplifier output to the SENSE pin, completing the loop and providing a 0.5 V reference output. If a resistor divider is connected as shown in Figure 3, the switch will
again be set to the SENSE pin. This will put the reference amplifier in a non-inverting mode with the VREF output defined as follows:

$$
\mathrm{VREF}=.5 *(1+\mathrm{R} 2 / \mathrm{R} 1)
$$

In all reference configurations, REFT and REFB drive the ADC core and establish its input span. The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference.

Figure 4.Internal Reference Connection

Figure 5.Programmable Reference Connection

External Reference Operation

The use of an external reference may be necessary to enhance the gain accuracy of the ADC or improve thermal drift characteristics. When multiple ADCs track one another, a single reference (internal or external) may be necessary to reduce gain matching errors to an acceptable level. A high precision external reference may also be selected to provide lower gain and offset temperature drift. External reference mode is chosen by tying SENSE pin to AVDD and driving VREF with external reference.

X

Selected Mode	SENSE Voltage	Internal Switch Position	Resulting VREF (V)	Resulting Differential Span (V p-p)
External Reference	AVDD	N/A	N/A	$2 \times$ External Reference
Internal	VREF	SENSE	0.5	1.0
Programmable	0.2 V to VREF	SENSE	$0.5 \times(1+$ R2/R1)	$2 \times$ VREF
Internal	AGND to 0.2 V	Internal Divider	1.0	2.0

Table 1 Reference Settings

Digital Outputs

The AD9289's differentialoutputs conform to the ANSI-644 LVDS standard. To set the LVDS bias current, place a resistor (RSET is nominally equal to $3.8 \mathrm{k} \Omega$) to ground at the LVDSBIAS pin. The RSET resistor current ($\sim 1.2 / \mathrm{RSET}$) is ratioed on-chip setting the output current at each output equal to a nominal 3.5 mA . A 100Ω differential termination resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver.

The AD9289's LVDS outputs facilitate interfacing with LVDS receivers in custom ASICs and FPGAs that have LVDS capability for superior switching performance in noisy environments. Single point-to-point net topologies are recommended with a 100Ω termination resistor as close to the receiver as possible. It is recommended to keep the trace length no longer than 3 inches and to keep differential output trace lengths as equal as possible.

The format of the output data can be selected as offset binary or twos complement. Pin S1 is used to set the format.

S1 Mode	Data Format
AVDD	Twos Complement
AGND	Offset Binary

Table 6: S1 Configuration

Timing

Data from each A/D is serialized and provided on a separate channel. The data rate for each serial stream is equal to 8 -bits times the sample clock rate, with a maximum of 520 MHz (8 -bits x $65 \mathrm{MSPS}=520 \mathrm{MHz}$). The lowest typical conversion rate is 20 MSPS.

Two output clocks are provided to assist in capturing data from the AD9289. The data clock out (DCO) is used to clock the output data and is equal to four times the sampling clock (CLK) rate. Data is clocked out of the AD9289 on the rising and falling edges
of DCO. The FCO clock is used to signal the start of a new output byte and is equal to the sampling clock rate. See the Timing Diagram for more information.

PLL $\overline{\text { LOCK Output }}$

The AD9289 contains an internal PLL that is used to generate the data clock out (DCO). When the PLL is locked, the LOCK/ signal will be low, indicating valid data on the outputs.

If for any reason the PLL loses lock, the LOCK/ signal will go high as soon as the lock circuitry detects an unlocked condition. While the PLL is unlocked, the data outputs and DCO will remain in the last known state. If the LOCK/ signal goes high in the middle of a byte, no data or DCO signals will be available for the rest of the byte. It will take at least 1μ s to regain lock if lock is lost.

Once the PLL regains lock, the DCO will start. The first valid data byte will be indicated by the FCO signal. See the Timing Diagram for more information.

CML Pin

A common mode level output is available at F3. This output selfbiases to AVDD/2. This is a relatively high impedance output (two 5 K resistors in series between AVDD and ground) with an output impedance of 2.5 K which may need to be considered when using as a reference.

Overange

The AD9289 has an Overange output available that indicates when the ADC is driven out of range. OR+ is driven high in overrange condition, with the digital outputs are clamped to all zeroes or all ones.Pin Function Descriptions

Preliminary Technical Data

Pin No.	Name	Description	Pin No.	Name	Description
C8	CLK+	Input Clock - True			
D8	CLK-	Input Clock - Complement	G8	VIN+D	ADC D Analog Input - True
F2, E4, F7	AVDD	3 V Analog Supply	F8	VIN-D	ADC D Analog Input - Complement
G2, E5, D7,E7,G7	AGND	Analog Ground	C5	DCO-	Data Clock Output - Complement
C3, C6	DRVDD	3 V Digital Output Supply	C4	DCO+	Data Clock Output - True
D3, D6	DRGND	Digital Ground	C1	FCO+	Frame Clock Output (MSB Indicator) True Output
H5	VREF	Voltage Reference Input/Output	C2	FCO-	Frame Clock Output (MSB Indicator) Complement Output
H4	SENSE	Reference Mode Selection	B1	D1+A	ADC A True Digital Output
F4	REFT_A	Differential Reference (Positive)	A1	D1-A	ADC A Complement Digital Output
G4	REFB_A	Differential Reference (Negative)	B3	D1+B	ADC B True Digital Output
F5	REFT_B	Differential Reference (Positive)	A3	D1-B	ADC B Complement Digital Output
G5	REFB_B	Differential Reference (Negative)	B5	D1+C	ADC C True Digital Output
E8	PDWN	Power Down Selection (set pin to AVDD for power down)	A5	D1-C	ADC C Complement Digital Output
C7	S1	Data Format	B7	D1+D	ADC D True Digital Output
G1	VIN+A	ADC A Analog Input - True	D1	OR+	Over Range True
F1	VIN-A	ADC A Analog Input - Complement	D2	OR-	Over Range Complement
H2	VIN+B	ADC B Analog Input - True	H1	LVDSBIAS	LVDS Bias Resistor Pin (3.8K to gnd)
H3	VIN-B	ADC B Analog Input - Complement	G3	SHARED_REF	Shared Reference Control Bit
H7	VIN+C	ADC C Analog Input - True	F3	CML	Common Mode Level Output (= AVDD/2)
H6	VIN-C	ADC C Analog Input - Complement	D4	LOCK/	PLL Lock Output
A2,A4,A6, A8,B2,B4, B6,B8,D5, E1,E2,E3, F6,G6,H8	DNC (Do Not Connect)		E6	DCR	Duty Cycle Control Enable Input Logic Hi enables duty cycle control circuit Logic Lo disables duty cycle control circuit

Table 7: Pin Function Descriptions

- S1 has an internal on-chip pulldown resistor

PIN CONFIGURATIONS

Figure 6: BGA Top View

TIMING DIAGRAM

Figure 7: Timing Diagram

OUTLINE DIMENSIONS

TOP VIEW

NOTES :
1.Controlling Dimensions are in Millimeters (mm
2. Dimensions per JEDEC Standards MO-205,

Variation BA .
3.Solder Ball Matrix is 8×8

SIDE VIEW

BOTTOM VIEW

T1tle: 64 MINI-BGA (4 Layer) $8 \times 8 \mathrm{~mm}$ Body, 0.80 mm Pitch Package Outline Customer

Figure 8: BGA Package Outline

Dim	Min.	Nom.	Max		Dim	Min.	Nom.	Max
A	1.35	1.55	1.70		b	0.45	0.50	0.55
A1	0.25	0.34			e	0.80 BSC		
A2	1.10	1.21	1.31		aaa	0.10		
D	7.90	8.00	8.10		bbb	0.10		
D1	5.60 BSC				ddd	0.12		
E	7.90	8.00	8.10		eee	0.15		
E1	5.60 BSC				fff	0.08		

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Ordering Guide

Model	Temperature Range	Description
AD9289BBC-65	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Ambient)	64 CSP_BGA
AD9289BBC-65EB	$25^{\circ} \mathrm{C}$ (Ambient)	Evaluation Board
Table 8: Ordering Guide		

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

[^0]: ${ }^{1}$ Specifications subject to change without notice
 ${ }_{3}^{2}$ Gain error and gain temperature coefficients are based on the ADC only (with a fixed 0.5 V external reference and a 1 V p-p differential analog input).
 ${ }^{3}$ Power dissipation measured with rated encode and a dc analog input (Out puts Static, IVDD $=0$.). Ivcc and Ivod measured with TBD MHz analog input @ 0.5 dBFS .

[^1]: ${ }^{1}$ Clock Inputs are LVDS compatible .Clock Inputs require external DC bias and cannot be AC coupled.
 ${ }^{2}$ SNR/harmonics based on an analog input voltage of -0.5 dBFS referenced to a 1 Vpp full-scale input range.

[^2]: ${ }^{1} t_{V}$ and $t_{P D}$ are measured from the transition points of the CLK input to the $50 \% / 50 \%$ levels of the digital outputs swing. The digital output load during test is not to exceed an ac load of 5 pF or a dc current of $\pm 40 \mu \mathrm{~A}$. Rise and fall times measured from 20% to 80%.

[^3]: ${ }^{1} \theta_{\mathrm{ja}}$ for a 4 layer PCB with solid ground plane in still air.

