SPECIFICATION FOR APPROVAL

() Preliminary	Specification
---	---------------	----------------------

() Final	Specif	ication

Title	12.1" XGA TFT LCD			
BUYER	SUPPLIER Bi-Search Int'l, Inc.			
MODEL	*MODEL EG121X1			

SUFFIX

SIGNATURE	DATE			
/				
/				
Please return 1 copy for your confirmation with				

your signature and comments.

APPROVED BY	DATE			
Y.K. Kim / S.Manager				
REVIEWED BY				
Y.W. Kim / Manager				
PREPARED BY				
Young K. Kim / Engineer				
Product Engineering Dept. Bi-Search Int'l, Inc.				

L02-THA

Ver0.1 Dec. 08, 2008 1 / 24

Contents

R	EVISION HISTORY	 3
1.	GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2.	ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 6
3.	ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 7
4.	BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	 11
5.	INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT	 12
6.	INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 14
7.	OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 16
8.	PACKAGING 8.1 PACKING SPECIFICATIONS 8.2 PACKING METHOD	 20
9.	DEFINITION OF LABELS	 22
10). PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	 23
11	I. MECHANICAL CHARACTERISTICS	 24

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description
0.0	Dec. 08. 2008	-	First Draft
0.1	Jan. 11.2009	5	Outline Dimension Correction
0.1	Jan. 11.2009		
0.1	Jan. 11.2009	24	Outline Drawing Update
0.1	Jan. 11.2009	25	Outline Drawing Update

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The EG121X1-L02-THA model is a 12.1" TFT-LCD module with a 2-LED Backlight Unit and a 20-pin 1ch-LVDS interface. This module supports 1024 x 768 XGA mode and displays 262,144 colors. The LED Driver module for the Backlight Unit is not built in.

1.2 FEATURES

- Wide viewing angle
- High contrast ratio
- Fast response time
- XGA (1024 x 768 pixels) resolution
- Wide operating temperature
- DE (Data Enable) mode
- LVDS (Low Voltage Differential Signaling) interface
- RoHS Compliance
- Led Replaceable
- Sunlight Readable

1.3 APPLICATION

- TFT LCD Monitor
- TFT LCD TV
- Industrial Application
- Amusement
- Vehicle

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	12.1	Inch	
Active Area	245.76(H) x 184.32(V)	mm (1)	
Bezel Opening Area	249.0 x 187.5	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1024 x R.G.B. x 768	Pixel	-
Pixel Pitch	0.240(H) x 0.240(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	Color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Anti-Reflection Coated	-	-
Luminance, white	1000 (Min. 1 Point)	cd/m ²	-
Power Consumption	10.32 (Typ.)	Watt	

1.5 MECHANICAL SPECIFICATIONS

Itenm		Min	Тур	max	Unit	Note
	Horizontal (H)	260.0	260.5	261.0	mm	
Module Size	Vertical (V)	203.5	204	204.5	mm	(1)
	Depth (D)	(11.95)	(12.45)	(12.95)	mm	
Weight		-	-	(700)	g	-
	or mounting ition	The mounting incli the screen center			-	(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Test Item	Test Condition	Note
High Temperature Storage Test	90°C, 240 hours	
Low Temperature Storage Test	-40°C, 240 hours	
Thermal Shock Storage Test	-40°C, 0.5hour←→80°C, 0.5hour; 1hour/cycle,100cycles	
High Temperature Operation Test	80°C, 240 hours	(1)(2)
Low Temperature Operation Test	-30°C, 240 hours	
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours	
Shock (Non-Operating)	200G, 2ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.	(3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(3)

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 90 C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before the reliability test

2.2 ELECTRICAL ABSOLUTE RATINGS

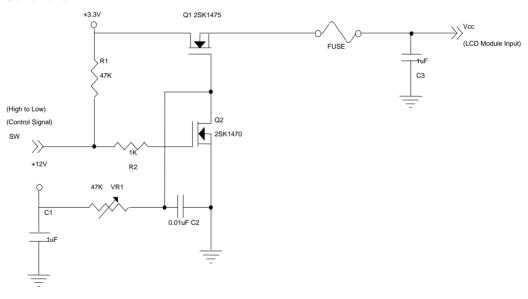
2.2.1 TFT LCD MODULE

ltom	Symbol	Value		l lait	Note	
Item	Symbol Mir	Min	Max	Unit	Note	
Power Supply Voltage	Vcc	-0.3	4.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	2.7	V		

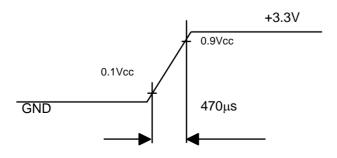
2.2.2 BACKLIGHT UNIT

Item	Symbol -	Value		Unit	Note
item		Min	Max	Offic	Note
Led Voltage	V_{L}	-	12	V_{RMS}	
Led Current	IL	0.86	-	A _{RMS}	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions. .


3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

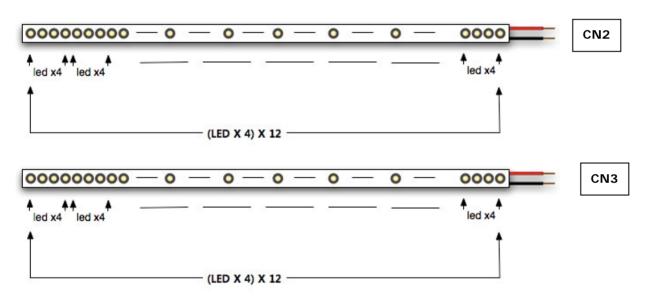

Parameter	Symbol		Value	l lmi4	Note		
Parameter	Symbol	Min	Тур	Max	Unit	Note	
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	-
Ripple Voltage		V _{RP}	-	-	100	mV	-
Rush Current		I _{RUSH}	-	-	1.0	А	(2)
Dower Supply Current	White		-	350	490	mA	(3)a
Power Supply Current	Black	-	-	510	650	mA	(3)b
LVDS differential input voltage		Vid	-100	-	+100	mV	-
LVDS common input volt	age	Vic	-	1.2	-	V	-

Note (1) The module is recommended to operate within specification ranges listed above for normal function.

Note (2) Measurement Conditions:

Vcc rising time is $470\mu s$

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

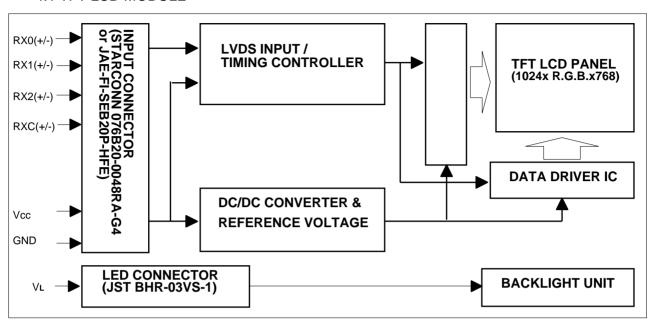

a. White Pattern	b. Black Pattern
Active Area	Active Area

3.2 BACKLIGHT UNIT

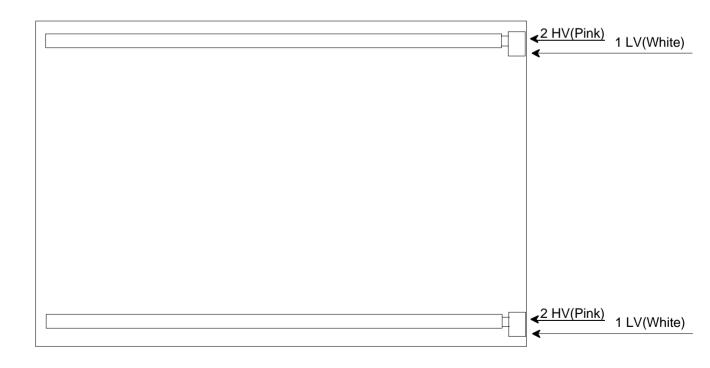
Parameter	Symbol		Value	Unit	Note		
Farameter	Symbol	Min	Тур	Max	Onit	NOTE	
Led Input Voltage	Vcc	-	12	-	V	-	
Led Current	A_RP	-	0.86	-	Α	-	
Led Life Time		50.000	-	-	Hrs	-	
Power Consumption			10.32		W	-	

The backlight interface connector is a model BHR-03VS-1, manufactured by JST. The mating connector part number is SM02B(8.0)B-BHS-1-TB or equivalent.

Backlight connector diagram


Note: The design of the LED Driver must have specification for the led in LCD Assembly.

The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the DC-DC LED Driver. So all the parameters of an LED Driver should be carefully designed so as not to produce too much leakage current from high-voltage output of the LED Driver. When you design or order the LED Driver, please make sure unwanted lighting caused by the mismatch of the LED and the LED Driver(no lighting, flicker, etc) never occurs. When you confirm it, the LCD Assembly should be operated in the same condition as installed in you instrument.


- 1. The specified current and power consumption are under the V_{CC} =3.3V, 25°C, f_V =60Hz condition whereas mosaic pattern is displayed and f_V is the frame frequency.
- 2. The variance of the voltage is \pm 10%.
- 3. The voltage above V_S should be applied to the leds for more than 1 second for start-up. Otherwise, the leds may not be turned on. The used LED current is the LED typical current.
- 4. The output of the LED Driver must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform. (Unsymmetrical ratio is less than 10%) Please do not use the LED Driver which has unsymmetrical voltage and unsymmetrical current and spike wave. LED frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore LED frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.
- 5. Let's define the brightness of the LED after being lighted for 5 minutes as 100%.
 T_s is the time required for the brightness of the center of the led to be not less than 95%.
- 6. The LED power consumption shown above does not include loss of external LED Driver. The used LED current is the LED typical current.
- 7. The life is determined as the time at which brightness of the LED is 50% compared to that of initial value at the typical LED current on condition of continuous operating at 25 ± 2 °C.
- 8. Do not attach a conducting tape to LED connecting wire.
 If the LED wire attach to a conducting tape, TFT-LCD Module has a low luminance and the LED Driver has abnormal action. Because leakage current is occurred between LED wire and conducting tape.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description	Remark
1	VCC_IN	Power Supply (3.3V)	
2	VCC_IN	Power Supply (3.3 V)	
3	GND	Ground	
4	GND	Ground	
5	RX0-	Differential Data Input, CH0 (Negative)	R0 ~ R5, G0
6	RX0+	Differential Data Input, CH0 (Positive)	
7	GND	Ground	
8	RX1-	Differential Data Input, CH1 (Negative)	G1 ~ G5, B0, B1
9	RX1+	Differential Data Input, CH1 (Positive)	
10	GND	Ground	
11	RX2-	Differential Data Input, CH2 (Negative)	B2 ~ B5, DE, Hsync, Vsync
12	RX2+	Differential Data Input , CH2 (Positive)	
13	GND	Ground	
14	CLK-	Differential Clock Input (Negative)	LVDS Level Clock
15	CLK+	Differential Clock Input (Positive)	
16	GND	Ground	
17	NA	Non-connection	
18	NA	Non-connection	
19	GND	Ground	
20	GND	Ground	

Note (1) Connector Part No.: STARCONN 076B20-0048RA-G4 or JAE FI-SEB20P-HFE or equivalent.

Note (2) Mating Connector Part No.: JAE-FI-SE20M, FI-S20S or equivalent.

Note (3) The first pixel is odd.

Note (4) Input signal of even and odd clock should be the same timing.

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Notes
1	LV	Low Voltage (White Color)	-
2	NC	-	-
3	HV	High Voltage (Pink Color)	-

Note (1) Connector Part No.: JST BHR-03VS-1 or equivalent

Note (2) User's connector Part No.: JST SM03(4.0)B-BHS-1-TB or equivalent

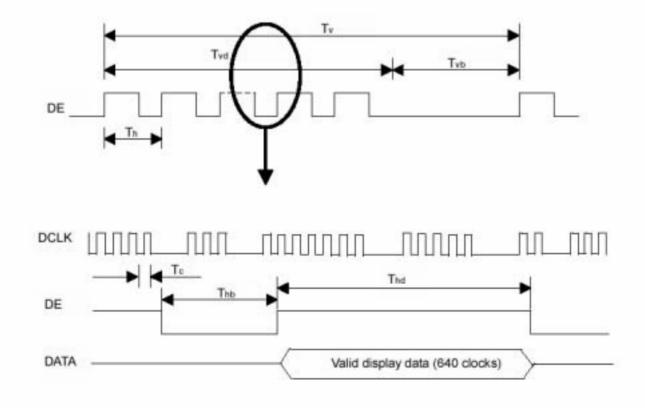
5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color

		Data Signal																	
	Color		Red Green Blue																
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale						÷								100				•	
Of	3	:	Ü	1	:		1	:		3	:		3	:		3	:	:	
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	5	:	4	1		4	1	•	į			1	-		ĕ	-		Į.	
Of	2	:	0	1		0	1		1	1	:	1			1			1	1
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	1		:		:	:	1		0	1		0	1		1	1		:	1
Of		÷		:	:		:	:		:	:								
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

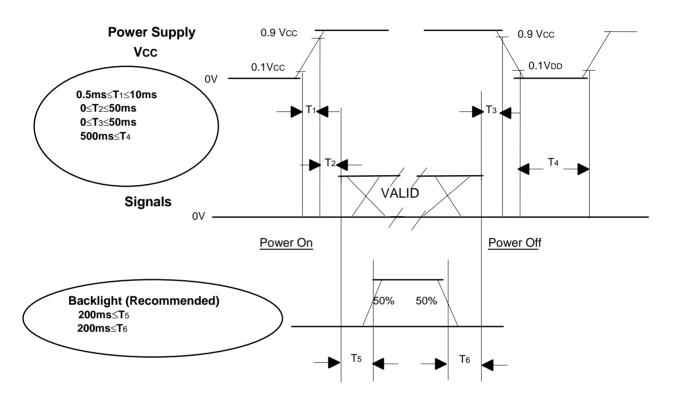
Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING


6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	Fc	57.5	64.9	74.4	MHz	
DOLK	Period	Тс	13.4	15.4	17.3	ns	
	Frame Rate	Fr	56	60	75	Hz	
Vertical Active Display Term	Total	Tv	774	806	848	Th	Tv=Tvd+Tvb
	Display	Tvd	768	768	768	Th	
	Blank	Tvb	Tv-Tvd	38	Tv-Tvd	Th	
	Total	Th	1240	1344	1464	Тс	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1024	1024	1024	Тс	
	Blank	Thb	Th-Thd	320	Th-Thd	Тс	


Note: (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF Sequence

Note (1) Please avoid floating state of interface signal at invalid period.

Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.

Note (3) The Backlight LED Driver power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight LED Driver power must be turned off before the power supply for the logic and the interface signal is invalid.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS


Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	Ha	50±10	%RH				
Supply Voltage	V _{cc}	5.0	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
LED Driver Current	IL	0.86	A				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

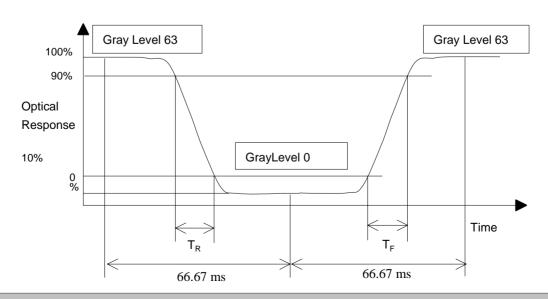
Item	ı	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			(0.595)		-	
	Neu	Ry			(0.339)		-	
	Green	Gx			(0.317)		-	
Color	Green	Gy		Тур -	(0.531)	Typ +	-	(1), (5)
Chromaticity	Blue	Вх	θ_{x} =0°, θ_{Y} =0°	0.03	(0.152)	0.03	-	(1), (3)
	Dide	Ву	CS-1000		(0.123)		-	
	White	Wx			(0.308)		-	
		Wy			(0.318)		_	
Center Luminan	ce of White	L _C		(1000)	-		-	(4), (5)
Contrast Ratio		CR		(500)	(700)		-	(2), (5)
Response Time		T _R	θ_{x} =0°, θ_{Y} =0°	-	(6)	(11)	ms	(3)
response nine		T _F	$\theta_{x}=0^{\circ}, \theta_{Y}=0^{\circ}$		(17)	(22)	ms	(3)
White Variation		δW	θ_{x} =0°, θ_{Y} =0°	n=	(1.25)	(1.4)	-	(5), (6)
	Horizontal	θ_{x} +		(70)	(80)			
Viewing Angle	Horizontai	θ_{x} -	CR≥10	(70)	(80)		Dog	(1), (5)
	Vertical	θ _Y +		(70)	(80)		Deg.	
	vertical	θ _Y -		(70)	(80)			

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

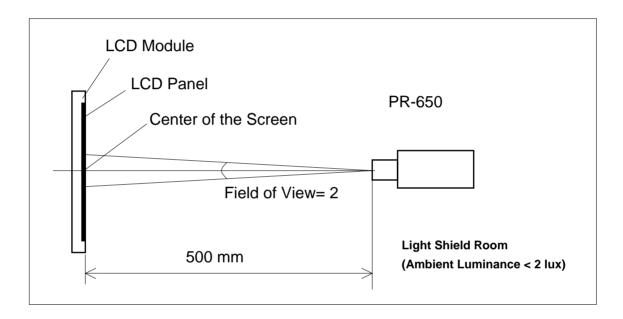
L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) and measurement method:

Note (4) Definition of Luminance of White (L_C):

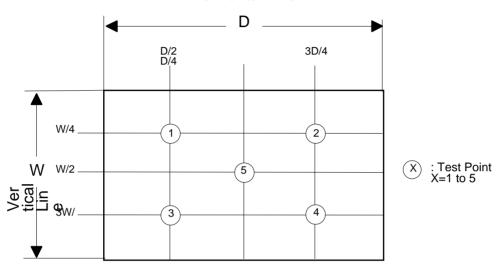

Measure the luminance of gray level 63 at center point

 $L_{\rm C} = L (5)$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.



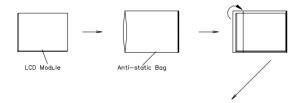
Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

$$\delta W = \frac{\text{Maximum [L (1), L (2), L (3), L (4), L (5)]}}{\text{Minimum [L (1), L (2), L (3), L (4), L (5)]}}$$

Horizontal Line

8. PACKAGING


8.1 PACKING SPECIFICATIONS

- (1) 15pcs LCD modules / 1 Box
- (2) Box dimensions: 461 (L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately 11.15Kg (15 modules per box)

8.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
Vibration	ISTA STANDARD Random, Frequency Range: 2 – 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y)	Non Operation
Dropping Test	1 Angle, 3 Edge, 6 Face, 61 cm	Non Operation

- (1) 15pcs Modules/1 box
- (2) Carton dimensions: 465(L)x362(W)x314(H)mm
- (3) Weight : approximately 11.15kg(15 Module per box).

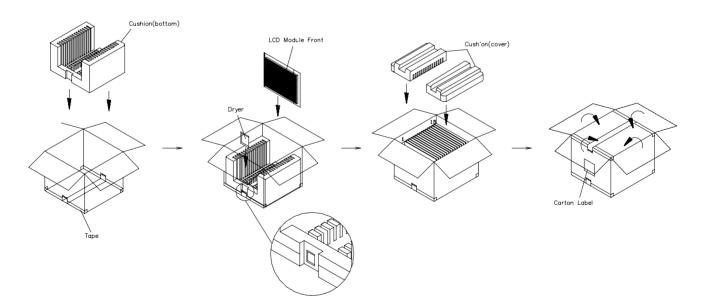


Figure. 8-1 Packing method

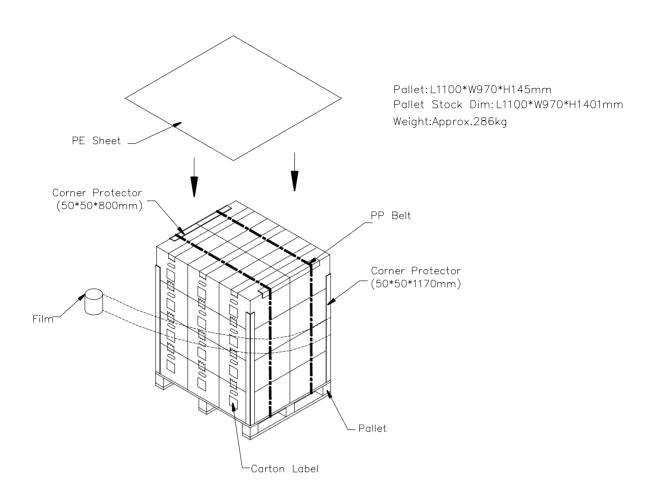
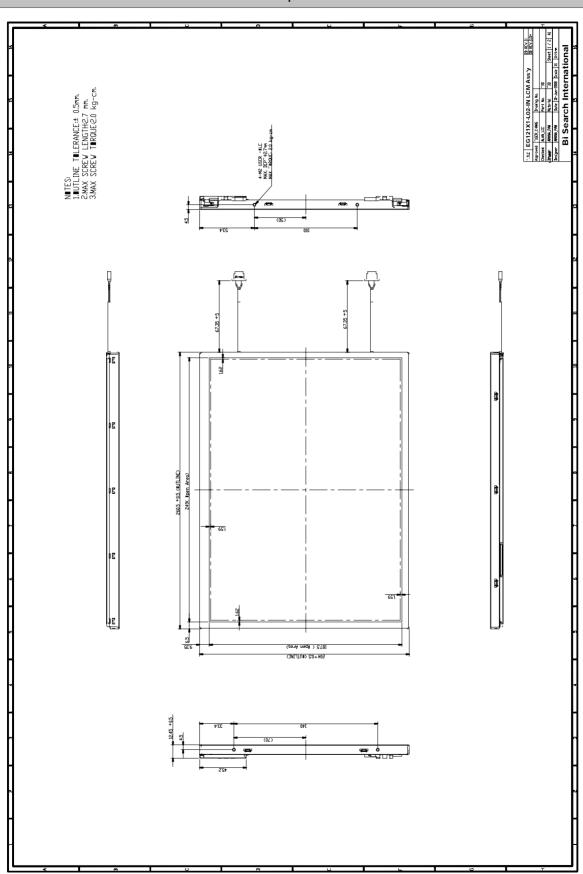
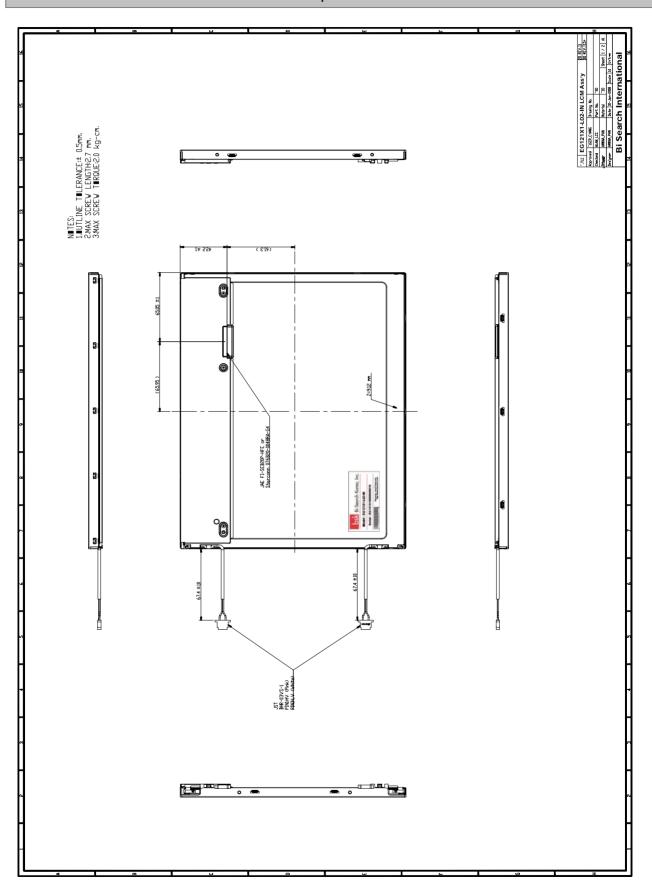


Figure. 8-2 Packing method

EG121X1-L02-THA Liquid Crystal Display

Product Specification


10. PRECAUTIONS


10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10 C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of LED will be higher than room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with LED Driver. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

