INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT533

Octal D-type transparent latch; 3-state; inverting

Product specification
File under Integrated Circuits, IC06

December 1990

Octal D-type transparent latch; 3-state; inverting

74HC/HCT533

FEATURES

- · 3-state inverting outputs for bus oriented applications
- · Common 3-state output enable input
- · Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT533 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT533 are octal D-type transparent latches featuring separate D-type inputs for each latch and 3-state outputs for bus oriented applications. A latch enable (LE) input and an output enable (\overline{OE}) input are common to all latches.

The "533" consists of eight D-type transparent latches with 3-state inverting outputs. When LE is HIGH, data at the D_n inputs enter the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its corresponding D-input changes.

When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE.

When $\overline{\text{OE}}$ is LOW, the contents of the 8 latches are available at the outputs.

When OE is HIGH, the outputs go to the high impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the latches.

The "533" is functionally identical to the "373", "563" and "573", but the "373" and "573" have non-inverted outputs and the "563" and "573" have a different pin arrangement.

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYI	TYPICAL		
	PARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	D_n to \overline{Q}_n		14	16	ns	
	LE to \overline{Q}_n		18	19	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	34	34	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

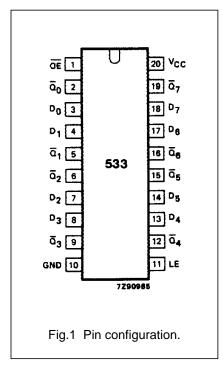
 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

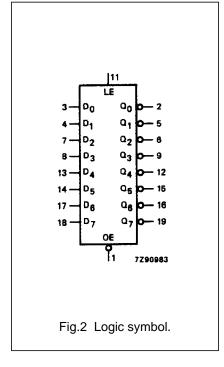
C_I = output load capacitance in pF

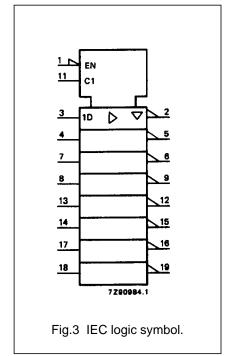
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

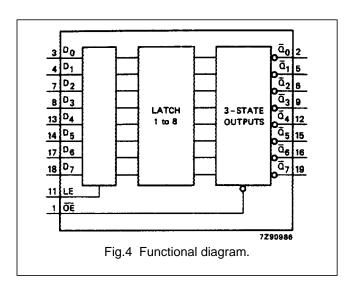

See "74HC/HCT/HCU/HCMOS Logic Package Information".

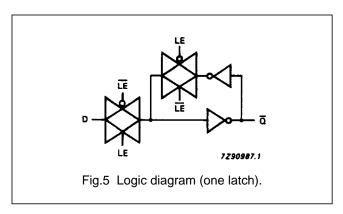

Octal D-type transparent latch; 3-state; inverting


74HC/HCT533

PIN DESCRIPTION

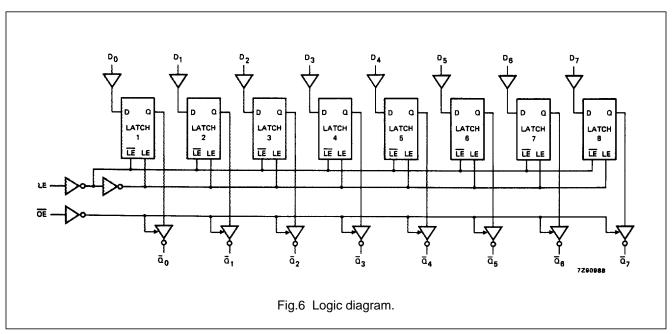
PIN NO.	SYMBOL	NAME AND FUNCTION					
1	ŌĒ	3-state output enable input (active LOW)					
2, 5, 6, 9, 12, 15, 16, 19	\overline{Q}_0 to \overline{Q}_7	3-state latch outputs					
3, 4, 7, 8, 13, 14, 17, 18	D ₀ to D ₇	data inputs					
10	GND	ground (0 V)					
11	LE	latch enable input (active HIGH)					
20	V _{CC}	positive supply voltage					





Octal D-type transparent latch; 3-state; inverting

74HC/HCT533



FUNCTION TABLE

OPERATING	II	NPUT	S	INTERNAL	OUTPUTS		
MODES	ŌΕ	LE	D _n	LATCHES	\overline{Q}_0 TO \overline{Q}_7		
enable and read register (transparent mode)	L L	H H	L H	L H	H		
latch and read register	L L	L L	l h	L H	H L		
latch register and disable outputs	H H	X X	X X	X X	Z Z		

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up prior to the HIGH-to-LOW LE transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up prior to the HIGH-to-LOW LE transition
 - X = don't care
 - Z = high impedance OFF-state

Octal D-type transparent latch; 3-state; inverting

74HC/HCT533

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
OVMDC:		74HC							1		
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(*)	
t _{PHL} / t _{PLH}	propagation delay D_n to \overline{Q}_n		47 17 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay LE to $\overline{\mathbf{Q}}_{n}$		58 21 17	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.8
t _{PZH} / t _{PZL}	3-state output enable time OE to Q _n		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.9
t _{PHZ} / t _{PLZ}			50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.9
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.7
t _W	LE pulse width HIGH	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8
t _{su}	set-up time D _n to LE	50 10 9	3 1 1		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.10
t _h	hold time D _n to LE	35 7 6	3 1 1		45 9 8		55 11 9		ns	2.0 4.5 6.0	Fig.10

Octal D-type transparent latch; 3-state; inverting

74HC/HCT533

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

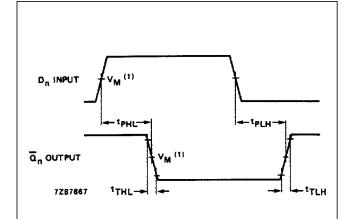
I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

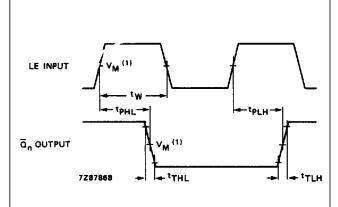
INPUT	UNIT LOAD COEFFICIENT						
D _n	0.15						
LE	0.30						
ŌĒ	0.55						

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL			74HCT								
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	$\begin{array}{c} \text{propagation delay} \\ D_n \text{ to } \overline{Q}_n \end{array}$		19	34		43		51	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay LE to \overline{Q}_n		22	38		48		57	ns	4.5	Fig.8
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE} to \overline{Q}_n		19	35		44		53	ns	4.5	Fig.9
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE} to \overline{Q}_n		18	30		38		45	ns	4.5	Fig.9
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.7
t _W	LE pulse width HIGH	16	5		20		24		ns	4.5	Fig.8
t _{su}	set-up time D _n to LE	10	3		13		15		ns	4.5	Fig.10
t _h	hold time D _n to LE	8	2		10		12		ns	4.5	Fig.10

Octal D-type transparent latch; 3-state; inverting


74HC/HCT533

AC WAVEFORMS

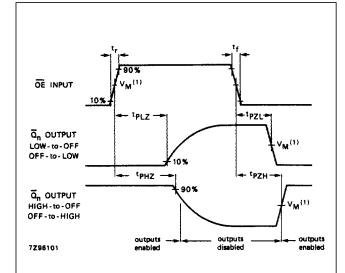

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the data input (D_n) to output (\overline{Q}_n) propagation delays and the output transition times.

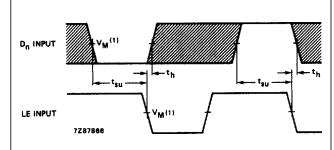

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.8 Waveforms showing the latch enable input (LE) pulse width, the latch enable input to output (\overline{Q}_n) propagation delays and the output transition times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.9 Waveforms showing the 3-state enable and disable times.

The shaded areas indicate when the input is permitted to change for predictable output performance.

(1) HC : $V_M = 50\%$; $V_I = GND \text{ to } V_{CC}$. HCT: $V_M = 1.3 \text{ V}$; $V_I = GND \text{ to } 3 \text{ V}$.

Fig.10 Waveforms showing the data set-up and hold times for D_n input to LE input.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.