
PS002200-ZMP0999 eZ80 1

eZ80

2 eZ80 PS002200-ZMP0999

GENERAL DESCRIPTION

Z80 High-Performance Microprocessor Core. The eZ80 is one of the fastest 8-
bit CPUs available today, executing code 4 times faster than a standard Z80 oper-
ating at the same clock speed. The increased processing efficiency can be used to
improve available bandwidth or to decrease power consumption.

Considering both the increased clock speed and processor efficiency, the eZ80’s
processing power rivals the performance of 16-bit microprocessors.

16 MB Linear Address. The eZ80 is also the first 8-bit microprocessor to support
16 MB linear addressing—a feature that addresses large memories that support
complex software applications.

Each software module, or each task under a real-time executive or operating
system, can operate in Z80-compatible (64 KB) mode, or full 24-bit (16 MB)
address mode.

ZDI. The ZiLOG Debug Interface is a 2-pin communication port. When used with
the ZiLOG Developer Suite (ZDS) software, ZDI provides on-chip emulation.

The eZ80 is a licensable soft core, allowing rapid integration into designs.

ARCHITECTURAL OVERVIEW

The eZ80 is ZiLOG’s next-generation Z80 processor core. It is the basis of a new
family of integrated microprocessors, and includes the following features:

• Upward-code-compatible from Z80 & Z180

• Several address-generation modes including 24-bit linear addressing

• 24-bit registers and ALU

• One-clock-minimum bus cycles

• Optional autonomous Multiply-Accumulate engine for DSP applications

PIN DESCRIPTIONS

Figure 1 illustrates the logic diagram of the eZ80. Table 1 describes the processor
and device pins.

PS002200-ZMP0999 eZ80 3

FIGURE 1. EZ80 LOGIC DIAGRAM

addr[23:0]
dout[7:0]

mrd_n
mwr_n
mreq_n
iord_n
iowr_n
iorq_n

instrd_n
halt_n
slp_n

rd_n
wr_n

rfsh_n
busak_n
intak_n

zdaout
zdatri_n

din[7:0]

rst_n

zcl
zdain

int_n
nmi_n

busrq_n
wait_n

intv_n

rfshreq
z180rfsh

ivs[7:0]

trap[1:0]

clk

4 eZ80 PS002200-ZMP0999

TABLE 1. PROCESSOR AND DEVICE PIN DESCRIPTIONS

Symbol Function Type Description

addr[23–0 Address Bus Output These lines select a location in memory or I/O space to be
read or written.

busak_n Bus Acknowledge Output, active
Low

The eZ80 responds to a Low on busrq_n, by suspending
instruction execution and driving this line Low.

busrq_n Bus request Input, active Low External devices can force the eZ80 to suspend operation
driving this line Low.

clk Clock Input The master clock of the eZ80.

din[7:0] Data Bus In Input These lines transfer information from I/O and memory
devices to the eZ80.

dout[7:0] Data Bus Out Output These lines transfer information from the eZ80 to I/O and
memory devices.

halt_n Halt Output, active
Low

A low on this pin indicates that the eZ80 is stopped
because of a HALT instruction.

instrd_n Instruction Read Output, active
Low

When instrd_n is Low, it indicates that the eZ80 is
fetching an instruction from memoryeZ80.

int_n Interrupt Input Input, active Low External devices can drive this line Low to request an
interrupt. The processor responds to this request at the
end of the current instruction cycle if it is enabled.

intak_n Interrupt
Acknowledge

Output, active
Low

A Low indicates that the eZ80 is acknowledging an
interrupt request on int_n.

intv_v Vectored Interrupt
Input

Input, active Low External devices can drive this line Low to request an
interrupt. The processor responds to this request at the
end of the current instruction cycle if it is enabled.

iord_n I/O Read Output, active
Low

iord_n Low indicates that the eZ80 is reading data from a
location in I/O space. The addressed I/O device uses this
signal to gate data onto the din[7:0] bus.

iorq_n I/O Request Output, active
Low

iorq_n Low indicates that the eZ80 is accessing a location
in I/O space. The RD and WR pins indicate the type of
access.

iowr_n I/O Write Output, active
Low

iowr_n Low indicates that dout[7:0] hold data to be
stored at the addressed I/O location.

ivs[7:0] Interrupt Vector Input In response to an interrupt caused by intv_n the low
vector byte is latched from this bus by the eZ80.

mrd_n Memory Read Output, active
Low

A Low indicates that the eZ80 is reading data from a
location in memory space. The addressed memory uses
this signal to gate data onto the din[7:0] bus.

mreq_n Memory Request Output, active
Low

A Low indicates that the eZ80 is accessing a location in
memory. The rd_n, wr_n, and instrd_n pins indicate the
type of access.

mwr_n Memory Write Output, active
Low

A low indicates that dout[7:0] hold the data to be stored
at the addressed memory location.

PS002200-ZMP0999 eZ80 5

PROCESSOR DESCRIPTION

The eZ80 is an 8-bit microprocessor that performs certain 16- or 24-bit opera-
tions. In both data sizes, the processor includes an accumulator. Register A is the
accumulator for 8-bit operations, and the multi-byte register HL is the accumulator
for 16- and 24-bit operations.

Processor Program Registers

In addition to register A, there are six more 8-bit registers named B, C, D, E, H, and
L, which are part of multi-byte registers BC, DE, and HL. Flag register F completes
the basic register bank.

High-speed exchange between these banks can be used by a program internally, or
one bank can be allocated to the mainline program and the other to interrupt
service routines.

nmi_n Nonmaskable
Interrupt

Input, falling-
edge active

nmi_n has a higher priority than int_n and intv_n and is
always recognized at the end of an instruction, regardless
of the state of the interrupt enable flip-flops. This signal
forces processor execution to location 0066H.

rd_n Read Output, active
Low

A Low indicates that the eZ80 is reading data from a
location in memory or I/O space. The addressed memory
or I/O uses this signal to gate data onto the din[7:0] bus.

rfsh_n Refresh Ourput, active
Low

rfshreq_n Refresh request Input, active Low

rst_n Master Reset Input, active Low This signal is used to initialize the eZ80.

slp_n Sleep Output, active
Low

A low on this pin indicates that the eZ80 is stopped
because of a SLP instruction.

trap[1:0] Instruction Trap Output, active
High

A High on either of these pins indicates that the eZ80 has
detected an invalid instruction.

wait_n Wait Input, active Low External devices can extend bus cycles to more than one
clock, by driving this line low.

wr_n Write Output, active
Low

A low indicates that dout[7:0] holds the data to be stored
at the addressed memory or I/O location.

z180rfsh Refresh control Input, active high

zcl ZiLOG Debug
Clock

Input Serial clock source for the ZiLOG Debug Interface (ZDI)
tool.

zdain Debug data in Input ZDI serial data input.

zdaout Debug data out Output ZDI serial data output

zdatri_n Debug pin control Output, active
Low

ZDI serial data tri-state control, when Low the package
pad should be tri-stated.

TABLE 1. PROCESSOR AND DEVICE PIN DESCRIPTIONS (CONTINUED)

Symbol Function Type Description

6 eZ80 PS002200-ZMP0999

Two Index registers IX and IY allow base and displacement addressing in
memory. IX and IY are not included in the register banks on the eZ80. They are
independent of the register banks.

Operating Modes

The eZ80 has two addressing modes, 16-bit mode and 24-bit mode. These modes
are controled by the Address and Data Long (ADL) bit.

When ADL is 0:

• the PC, SP, BC, DE, HL, IX, and IY registers are effectively 16 bits wide, as on
the Z80 and Z80180, and

When ADL is 1:

• the PC, SP, BC, DE, HL, IX, and IY registers are 24 bits wide.

The multiple operating modes of the processor allows Z80 code to be run without
change in native Z80 or virtual Z80 with ADL cleared to zero or with ADL set to
one the application can take advantage of the eZ80’s 16-Mbyte linear addressing
space and enhanced instruction set.

These operating modes are governed by:

• The Address and Data Long (ADL) mode bit, and

• An 8-bit register called MBASE.

Native Z80 Mode. ADL, and MBASE reset to 0. In this Native Z80 state, the
programming model includes 16-bit registers and addresses, and a 64 KB memory
space at the start of the eZ80’s potential 16-Mbyte memory space. The upper 8-
bits of address (23-16) are held at zero, the value of MBASE. This is the mode the
eZ80 comes up in after reset.

Virtual Z80 Mode. If ADL is cleared, but MBASE contains a non-zero value, the
programming model still includes 16-bit registers and a 64 KB memory space, but
this space is relocated in the 16-Mbyte memory space by MBASE. In this Virtual
Z80 mode, several tasks can each have their own Z80 partition.

ADL Mode. If ADL is set, MBASE has no effect on memory addressing. In this
mode, the PC, BC, DE, HL, IX and IY registers are expanded from 16 to 24 bits,
and a 24-bit Stack Pointer Long (SPL) register replaces the 16-bit Stack Pointer
Short (SPS) register that is used in the other modes. When the processor fetches
an instruction that includes a 16-bit address or immediate datum in the other
modes, it automatically fetches a 24-bit address or datum. .

Mode Switching. The eZ80 switches between ADL mode and any of the other
modes only as part of a specially-prefixed CALL, JP, RET, or RST instruction, or an
interrupt or trap operation. The MBASE register can be changed only in ADL
mode.

PS002200-ZMP0999 eZ80 7

Interrupts

Nonmaskable Interrupt (NMI). The eZ80 latches falling edges on the nmi_n pin.
Only a Low on RESET (rst_n) or BUSRQ (busrq_n) takes precedence over NMI.
Unless RESET or BUSRQ is Low, the eZ80 checks for a latched edge from NMI
as it completes each instruction and performs an NMI sequence if a falling edge
has occurred.

The nonmaskable interrupt always vectors to location 66H for the start of its inter-
rupt routine.

Interrupt (INT). The eZ80 can handle interrupts requested by a device on the int_n
pin, in any of three ways called modes 0, 1, or 2. The interrupt from the int_n pin
is maskable via the EI and DI instructions which enable or disable interrupts.

The special instructions IM 0, IM 1, and IM 2 select among these three modes.
Reset selects mode 0.

Interrupt Processor Response. The eZ80 performs an int_n interrupt sequence
at the end of an instruction if all of the following are true:

• INT (int_n) is Low

• RESET and BUSRQ are both High

• A negative edge on NMI has not been detected

• Interrupts are enabled

When all of these conditions occur simultaneously, the eZ80 responds with an
interrupt acknopwledge cycle.

While all interrupt acknowledge cycles follow a general pattern, they differ as to
what the processor does with the data on din[7:0]. These actions depend upon the
most recently executed IM instruction.

All interrupt acknowledge cycles:

• Save the address of the interrupted instruction (return address)

• Clear the interrupt enable flag (disables interrupts), preventing further interrupts

• Drives the intak_n pin Low

8 eZ80 PS002200-ZMP0999

INT Mode 0. If the most recently executed IM instruction was IM 1, the eZ80
reads the data on din[7:0] as an instruction opcode (while intak_n is Low). If the
instruction is a multi-byte instruction (CALL) the intak_n pin will be brought
back High and then low again for each sussive instruction opcode bytes.

INT Mode 1. If the most recently executed IM instruction was IM 1, the eZ80
ignors the data on din[7:0] and vectors to address 38H.

INT Mode 2. If the most recently executed IM instruction was IM 2, the eZ80
performs a vectored interrupt. The lower 8-bits of the interrupt vector is placed on
din[7:0] while intak_n is Low (bit 0 is assumed to be zero). The actual vector
address is made up of bits 23-16 are zero, bits 15-8 are the contenst of the I
register, and bits 7-0 are supplied vector byte. The 16-bit word at the above vector
address is fetched and its value is assumed to be the start of the interrupt service
routine, with bits 23-16 provided by the eZ80 processor as zeros.

The I Register. The eZ80 uses the contents of this register as A15–8 of the logical
address for fetching interrupt service routine addresses from memory, and in
response to interrupt requests from internal peripherals.

Vectored Interrupt. The eZ80 has a vectored interrupt source intv_n which acts
simulator to the mode 2 interrupts above. This interrupt can be masked via the EI
and DI instructions.

The intv_n interrupt response differs from the INT response in that the vector Low
byte is not latched from the data bus but comes from the ivs[7:0] bus.

llegal Instruction Traps

The eZ80 instruction set does not fully cover all possible sequences of binary
values. Sequences for which no operation is defined, are illegal instructions.

When an eZ80 processor fetches one of these sequences, it performs a Trap
sequence. Which byte of the mulit-byte instruction which caused the trap is indi-
cated by the trap[1:0] bus.

Interrupt and Traps. Applications that operate only in Native Z80 mode, or ADL
mode, are relatively simple with respect to interrupts and traps. In these modes,
memory always starts at the start of the eZ80’s potential 16-Mbyte memory space,
and the interrupt and trap locations are never mapped.

However, as interrupts and traps are never mapped, applications that switch
between modes, or operate in Virtual Z80, mode, can simplify interrupts and trap
handling by executing a STMIX instruction to set the mixed ADL bit.

If the mixed ADL bit is 1, interrupts and instruction traps stack the ADL state as
well as the PC, and enter ADL mode in the first 64K bytes of the eZ80’s potential
16M byte memory space.

PS002200-ZMP0999 eZ80 9

I/O Space

A separate I/O space includes on-chip and off-chip peripheral devices. The eZ80
features an I/O space with 16-bit addresses and 64K bytes.

10 eZ80 PS002200-ZMP0999

MEMORY

The eZ80 provides several address-generation modes:

Native Z80 mode. The total memory address space is the first 64K bytes of the
overall eZ80 memory space. The Memory Base (MBASE) register is zero.

Virtual Z80 mode. The memory address space can be any 64 KB in the overall
16M byte eZ80 memory space, under control of the MBASE register.

Address and Data Long (ADL) mode. This mode allows programs compiled or
assembled for the eZ80 to operate in a 16M byte linear address space. In this
mode, the 16-bit registers PC, BC, DE, HL, IX, and IY expand to 24 bits, as does
the width of the ALU. The processor automatically fetches an additional byte of
address or immediate data in those instructions that contain a 16-bit address or
datum in other modes.

Prefix-override bytes allow any instruction to operate as in ADL mode in one of
the first two modes, or to use MBASE addressing in ADL mode.

Addressing Modes

Memory addresses can be formed in several ways. eZ80 addressing modes
include:

Relative Addressing. JR and DJNZ instructions include a signed 8-bit displace-
ment that specifies a range of addresses –126 to +129 from the start of the instruc-
tion, to which program control can be transferred.

Direct Addressing. Direct-addressing instructions include a 16-bit logical or 24-
bit linear address, depending on a prefix byte or the ADL mode. (The same opera-
tional distinction applies to instructions that contain 16- or 24-bit immediate data.)

Register Indirect Addressing. The address is taken from one of the multi-byte
registers BC, DE or HL. Depending on a prefix byte or the ADL mode, the register
supplies a 24-bit linear address or a 16-bit logical address that is subject to
MBASE.

Indexed Addressing. In this mode, instructions include an 8-bit signed displace-
ment from the address in an index register, IX or IY. Depending on a prefix byte or
the ADL mode, the register supplies a 24-bit linear address or a 16-bit logical
address that is subject to MBASE.

Instruction Fetching. In ADL mode, the Program Counter (PC) supplies a 24-bit
linear address. In other modes, it supplies a 16-bit address that is subject to
MBASE.

Stack Operations. Depending on the ADL mode and in some cases on a prefix
byte, stack addresses may be formed in either of two ways. Either a 24-bit register
SPL acts as the Stack Pointer, and supplies a 24-bit linear address, or the 16-bit
register SPS acts as the Stack Pointer, supplying a 16-bit logical address that is
subject to MBASE.

PS002200-ZMP0999 eZ80 11

Interrupts, Traps, and RST Instructions. All of these operations are affected by
a global state called Mixed ADL, which should be set appropriately for each
application. Mixed ADL should be 0 for applications in which all code runs in the
same ADL state, but should be 1 for applications that include some code that runs
in ADL mode and some that runs in other modes. If Mixed ADL is 1, and an inter-
rupt, Trap, or Restart occurs, the eZ80 stacks a byte containing the ADL mode of
the interrupted, trapped, or calling process on SPL, before setting ADL mode for
the service routine.

Mode 2 Interrupts. in ADL mode, the interrupt table must always be in the first
64K bytes, as must the start of interrupt service routines entered through the inter-
rupt table.

A23-16 for Instruction fetching

If ADL is 1, A23-16 for instruction fetches come from bits 23-16 of the Program
Counter, while if ADL is 0 they come from the MBASE register. There is no over-
ride facility for this choice.

Indirect register and Indexed addressing

When ADL is 1, A23-16 of the memory address for the execution cycle(s) are
taken from the high-order 8 bits of the 24-bit register, while when ADL is 0 these
address lines are taken from the MBASE register. These conventions can be over-
ridden for one of these instructions by preceding it with a prefix byte (by suffixing
its assembler opcode with “.S” or “.L”).

Stack Pointer Selection

The following instructions:

EX (SP),HL/IX/IY
PUSH
POP
LD SP,(nnnn)
LD (nnnn),SP
LD SP,nnnn

use the 24-bit SPL register if ADL is 1, while if ADL is 0 they use the 16-bit SPS
register, mapped by the MBASE. This convention can be overridden for one
instruction by preceding it with a prefix byte (assembler opcode suffix “.S” or
“.L”).

Direct Addresses

While fetching the instructions:

LD r,(nnnn)
LD (nnnn),r
LD rr,(nnnn)
LD (nnnn),rr,

12 eZ80 PS002200-ZMP0999

the processor fetches three address bytes if ADL is 1, while if ADL is 0 it fetches
only two bytes of address, and uses the MBASE for A23-16. This convention can
be overridden for one instruction by preceding it with a prefix (assembler opcode
suffix .IS or .IL).

Multi-byte immediate data

While fetching the instruction

LD rr,nnnn

the processor fetches three data bytes if ADL is 1, while if ADL is 0 it fetches
only two data bytes, and clears bits 23-16 of the register to zero. This convention
can be overridden for one instruction by preceding it with a prefix (assembler
opcode suffix .IS or .IL).

16 vs. 24-bit memory data

In execution/stack cycles for:

EX (SP),HL/IX/IY
LD BC/DE/HL/SP/IX/IY,(nnnn)
LD (nnnn),BC/DE/HL/SP/IX/IY
LD BC/DE/HL/IX/IY,(HL/IX+d/IY+d)
LD (HL/IX+d/IY+d),BC/DE/HL/IX/IY
PUSH*
POP*

the processor stores and/or fetches three bytes in memory if ADL is 1, or two
bytes if ADL is 0. For memory-fetch cycles (including POP) when ADL is zero,
the processor zeroes bits 23-16 of the affected register. This convention can be
overridden for one instruction by preceding it with a prefix (assembler opcode
suffix .S or .L).

* PUSH AF and POP AF with ADL=1 are special cases. For these, SP is incre-
mented or decremented by 3, as for other stack operations when ADL is 1, but the
processor only reads or writes two bytes.

Internal 16- vs. 24-bit operations

In instructions:

LD SP,HL/IX/IY
EX DE,HL
LDI, LDIR, LDD, LDDR
CPI, CPIR, CPD, CPDR
ADD/SUB/SBC HL,rr
ADD IX/IY,rr
INC/DEC rr
JR e
JR cc,e
DJNZ e
INI, INIR, INI2, INI2R, IND, INDR
OUTI, OTIR, OTI2, OTI2R, OUTD, OTDR

PS002200-ZMP0999 eZ80 13

if ADL is 1 the operation affects all 24 bits of registers that are loaded or modi-
fied, while if ADL is 0, bits 23-16 of affected registers are zeroed. This conven-
tion can be overridden for one instruction by preceding it with a prefix (assembler
opcode suffix .S or .L).

Condition Codes

In instructions

ADD/ADC/SBC rr,rr
and BC decrementing in LDI, LDIR, LDD, LDDR, CPI, CPIR, CPD, CPDR

the result condition code reflects the 24-bit result if ADL is 1, else it reflects the
16-bit result as on the 18x. This convention can be overridden for one instruction
by preceding it with a prefix (assembler opcode suffix .S or .L).

Changing the ADL Mode: CALL, RST, JP, and RET

There is no separate instruction to simply change ADL, because after such an
instruction the Program Counter would undergo an unmanageable change in inter-
pretation. ADL can be changed only by prefixing a CALL or JP nnnn instruction
with a .IS or .IL prefix, or a RST, RET or JP (rr) instruction with a .S or .L prefix.

Tables 2 through 6 describe these instructions for various cases of prefix bytes and
the ADL mode.

TABLE 2. CALL INSTRUCTION

ADL Prefix Operation

0 none stack 2-byte logical return address using SPS mapped by MBASE
keep ADL 0
load a 2 byte logical address from the instruction into PC

1 none stack the 3 byte return address using SPL
keep ADL 1
load a 3 byte address from the instruction into PC

0 .IS stack 2-byte logical return address using SPS mapped by MBASE
stack a 00 byte using SPL
keep ADL 0
load a 2 byte logical address from the instruction into PC

1 .IS stack the 2 LS bytes of the return address using SPS mapped by MBASE
stack the MS byte of the return address using SPL
stack a 01 byte using SPL
clear ADL
load a 2 byte logical address from the instruction into PC

0 .IL stack the 2 byte logical return address using SPL
stack a 00 byte using SPL
set ADL
load a 3 byte address from the instruction into PC

1 .IL stack the 3 byte return address using SPL
stack a 01 byte using SPL
keep ADL 1
load a 3 byte address from the instruction into PC

14 eZ80 PS002200-ZMP0999

TABLE 3. RST NN INSTRUCTION

ADL Prefix Operation

0 none stack 2-byte logical return address using SPS mapped by MBASE
keep ADL 0
load the 16-bit logical address 00nn into PC

1 none stack the 3 byte return address using SPL
keep ADL 1
load the 24-bit address 0000nn into PC

0 .IS stack 2-byte logical return address using SPS mapped by MBASE
stack a 00 byte using SPL
keep ADL 0
load the 16-bit logical address 00nn into PC

1 .IS stack the 2 LS bytes of the return address using SPS mapped by MBASE
stack the MS byte of the return address using SPL
stack a 01 byte using SPL
clear ADL
load the 16-bit logical address 00nn into PC.

0 .IL stack the 2 byte logical return address using SPL
stack a 00 byte using SPL
set ADL
load the 24-bit address 0000nn into PC

1 .IL stack the 3 byte return address using SPL
stack a 01 byte using SPL
keep ADL 1
load the 24-bit address 0000nn into PC

TABLE 4. JP NNNN INSTRUCTION

ADL Prefix Operation

0 none load a 2-byte logical address from the instruction into PC
keep ADL 0

1 none load a 3-byte address from the instruction into PC
keep ADL 1

x .IS clear ADL
load a 2-byte logical address from the instruction into PC

x .IL set ADL
load a 3-byte address from the instruction into PC

TABLE 5. RET, RETI, OR RETN INSTRUCTION

ADL Prefix Operation

0 none pop a 2-byte logical address from SPS mapped by MBASE into PC
keep ADL 0

1 none pop a 3-byte logical address from SPL into PC
keep ADL 1

PS002200-ZMP0999 eZ80 15

Mixed-ADL Applications

Applications that include legacy routines/functions/tasks/modules that run in non-
ADL mode, and new routines/functions/tasks/modules that run in ADL mode,
must follow certain rules to assure proper operation.

1. Include a STMIX instruction in device initialization, to assure that interrupt
service routines begin in a consistent mode (ADL mode).

2. End all interrupt service routines with a prefixed RET or RETI instruction,
which POPs the interrupted code’s ADL state from the SPL stack.

3. CALL, or JP to, each routine/function/task/module in the mode in which it was
assembled or compiled.

4. Any routine that may be CALLed from either mode, must be CALLed with a
prefix to save the caller’s ADL mode on the SPL stack.

5. Any routine that may be CALLed from either mode, must return with a
prefixed RET instruction, to restore the caller’s ADL state from the SPL stack.

6. If calling code operating in one mode must pass stack-based operands/
arguments to a routine compiled or assembled for a different mode, it must use
prefixed instructions to set up the operands/arguments. For PUSH, .S and .L

0 .S or
.L

pop a byte from SPL
load its units bit into ADL
if ADL is still 0,
pop 2-byte logical address from SPS mapped by MBASE into PC

if ADL is now 1,
pop a byte from SPL into PC23-16,
then pop two bytes from SPS mapped by MBASE into PC15-0.

1 .S or
.L

pop a byte from SPL
load its units bit into ADL
if ADL is now 0, pop a 2-byte logical address from SPL into PC
if ADL is still 1, pop a 3-byte address from SPL into PC.

TABLE 6. JP (RR) INSTRUCTION

ADL Prefix Operation

0 none load a 16-bit logical address from the register into PC
keep ADL 0

1 none load a 24-bit address from the register into PC
keep ADL 1

x .IS clear ADL
load a 16-bit logical address from the register into PC

x .IL set ADL
load a 24-bit address from the register into PC

TABLE 5. RET, RETI, OR RETN INSTRUCTION

ADL Prefix Operation

16 eZ80 PS002200-ZMP0999

prefixes control both whether SPS or SPL is used, and whether the operands/
arguments are stored as 2-byte or 3-byte values.

NOTE: In mixed-ADL applications, some of the rules above may represent exceptions to
the eZ80’s design goal that legacy code not have to be modified in order to be run on the
eZ80. Assuming that legacy routines are not selectively converted to ADL mode, and that
legacy routines don’t call newly-written routines, the only rule that would lead to such
modification would be number 5. If each legacy routine ends with a single RET at its end,
this conversion is easy. Internal and conditional RETs require more careful review -- a
program to highlight RETs may be helpful.

Prefix Bytes: Exceptions to the ADL Mode

In the ZiLOG ZMASM / ZDS assembler, code is assembled for a given state of
the ADL mode bit by preceding it with a pseudo-op:

.assume adl=1 ; or 0

The programmer is of course responsible for ensuring that this source-file setting
matches the state of the hardware ADL mode bit when the code is executed.

The ADL mode and assume setting govern several different aspects of instruction
operation and eZ80 operation, as described in preceding sections. Two different
kinds of exception to normal operation can be selected for a particular instruction,
by adding a suffix to the instruction’s op code:

Suffices .IS and .IL control whether a memory address or multi-byte immediate
data, in the instruction, should be two or three bytes long.

Suffices .S and .L control whether the overall operation of the instruction should
involve 16 bits or 24 bits.

Table 7 shows which suffices apply to which instructions. Instructions not shown
in this table are not affected by prefix bytes / opcode suffixes.

TABLE 7. APPLICABILITY OF EXCEPTION SUFFIXES

Instruction (Class) .S/.L .IS/.IL

ADD/ADC/SUB/SBC/AND/OR/XOR/CP A,(HL/IX+d/IY+d) Y

ADD/ADC/SBC rr,rr Y

BIT/SET/RES b,(HL/IX+d/IY+d) Y

CALL Y

CPI, CPIR, CPD, CPDR Y

EX DE,HL Y

EX (SP),HL/IX/IY Y

INC/DEC (HL/IX+d/IY+d) Y

INC/DEC rr Y

INI, INIR, IND, INDR Y

JP nnnn Y

JP cc,nnnn Y

JP (HL/IX/IY) Y

LD (BC/DE),A Y

PS002200-ZMP0999 eZ80 17

A few instructions, that involve both a multi-byte register and a direct memory
address or immediate datum, are affected by both exceptions. The proper suffix
for exceptions on these instructions is .SIS, .SIL, .LIS, or .LIL.

For the sake of those instructions, the prefix bytes always express both kinds of
exceptions. The prefix bytes replace several Z80 and Z80180 instructions that
have no function. If an eZ80 assembler encounters one of these replaced instruc-
tions, it will issue a warning message and assemble it as a standard NOP (00H).
Table 8 shows the eZ80 prefix bytes.

As for the traditional Z80 prefix bytes, the eZ80 does not allow an interrupt to
occur between fetching one of these prefix bytes and fetching the following
instruction. These prefix bytes must precede traditional Z80 prefix bytes.

LD (HL/IX+d/IY+d),n Y

LD (HL/IX+d/IY+d),r Y

LD (HL/IX+d/IY+d),rr Y

LD (nnnn),r Y

LD (nnnn),rr [incl. IX, IY, SP] Y Y

LD A,(BC/DE) Y

LD r,(HL/IX+d/IY+d) Y

LD r,(nnnn) Y

LD rr,(HL/IX+d/IY+d) Y

LD rr,(nnnn) [incl. IX, IY, SP] Y Y

LD rr,nnnn [rr other than SP] Y

LD SP,HL/IX/IY Y

LD SP,nnnn Y Y

LDI, LDIR, LDD, LDDR Y

OUTI, OTIR, OUTD, OTDR Y

POP Y

PUSH Y

RET, RETI, RETN Y

RLC/RL/RRC/RR/SLA/SRA/SRL (HL/IX+d/IY+d) Y

RST Y

TST (HL) Y

TABLE 8. NEW PREFIX BYTES ON THE EZ80

opcode Z80 instruction eZ80 prefix

40H LD B,B .SIS

49H LD C,C .LIS

52H LD D,D .SIL

5BH LD E,E .LIL

TABLE 7. APPLICABILITY OF EXCEPTION SUFFIXES

Instruction (Class) .S/.L .IS/.IL

18 eZ80 PS002200-ZMP0999

INPUT/OUTPUT

The eZ80 includes an I/O space that is distinct from memory space. I/O space is
accessed by means of IN and OUT instructions rather than LD, PUSH, POP, and
other instructions that access memory space. Addresses in I/O space always have
A23–16 all 0.

RESET CONDITIONS

The effects of Reset on the following registers and state bits are cleared to 0:
ADL, Mixed ADL, MBASE, PC, SP, I, IEF1, IEF2, R, and F. The following
are not changed by Reset: A, B, C, D, E, H, L, IX, and IY.

S

INSTRUCTION SET

Classes of Instructions

TABLE 9. LOAD INSTRUCTIONS

Mnemonic Operands Instruction

LD dst,src Load

LEA qq,IX/Y±d Load Effective Address

PEA IX/Y±d Push Effective Address

POP dst Pop

PUSH src Push

TABLE 10. ARITHMETIC INSTRUCTIONS

Mnemonic Operands Instruction

ADC dst,src Add with Carry

ADD dst,src Add

CP A,src Compare

CPD(R) Block Scan, decrementing (and Repeat)

CPI(R) Block Scan, incrementing (and Repeat)

DAA Decimal Adjust Accumulator

DEC dst Decrement

INC dst Increment

MLT rr Multiply

NEG Negate Accumulator

SBC dst,src Subtract with Carry

SUB A,src Subtract

PS002200-ZMP0999 eZ80 19

TABLE 11. LOGICAL INSTRUCTIONS

Mnemonic Operands Instruction

AND A,src Logical AND

CPL Complement accumulator

OR A,src Logical OR

TST A,src Test accumulator

XOR A,src Logical Exclusive OR

TABLE 12. EXCHANGE INSTRUCTIONS

Mnemonic Operands Instruction

EX AF,AF’ Exchange Accumulator and Flags

EX DE,HL Exchange DE and HL

EX (SP),rr Exchange register and top of stack

EXX Exchange register banks

TABLE 13. PROGRAM CONTROL INSTRUCTIONS

Mnemonic Operands Instruction

CALL cc,dst Conditional Call

CALL dst Call

DJNZ dst Decrement and Jump if Non-Zero

JP cc,dst Conditional Jump

JP dst Jump

JR cc’,dst Conditional Jump Relative

JR dst Jump Relative

RET cc Conditional Return

RET Return

RETI Return from Interrupt

RETN Return from Nonmaskable interrupt

RST dst Restart

TABLE 14. BIT MANIPULATION INSTRUCTIONS

Mnemonic Operands Instruction

BIT n,src Bit test

RES n,dst Reset bit

SET n,dst Set bit

20 eZ80 PS002200-ZMP0999

TABLE 15. BLOCK TRANSFER INSTRUCTIONS

Mnemonic Operands Instruction

LDD(R) Block Move, decrementing (and Repeat)

LDI(R) Block Move, incrementing (and Repeat)

TABLE 16. ROTATE AND SHIFT INSTRUCTIONS

Mnemonic Operands Instruction

RL dst Rotate Left

RLA Rotate Left Accumulator

RLC dst Rotate Left Circular

RLCA Rotate Left Circular Accumulator

RLD Rotate Left Decimal

RR dst Rotate Right

RRA Rotate Right Accumulator

RRC dst Rotate Right Circular

RRCA Rotate Right Circular Accumulator

RRD Rotate Right Decimal

SLA dst Shift Left

SRA dst Shift Right Arithmetic

SRL dst Shift Right Logical

PS002200-ZMP0999 eZ80 21

TABLE 17. INPUT/OUTPUT INSTRUCTIONS

Mnemonic Operands Instruction

IN A, (n) Input to A from port n

IN r, (C) Input to register from port in BC

IN0 r, (n) Input to r from port n in page 0

IND(R) Block Input, decrement HL (and Repeat)

IND2(R) Block Input, decrement both (and Repeat)

INDM(R) Block Input, page 0, decrement both (and Repeat)

INI(R) Block Input, increment HL (and Repeat)

INI2(R) Block Input, decrement both (and Repeat)

INIM(R) Block Input, page 0, increment both (and Repeat)

OTDM(R) Block Output, page 0, decrement both (and Repeat)

OTIM(R) Block Output, page 0, increment both (and Repeat)

OUT (n), A Output from A to port n

OUT (C), r Output from register to port in BC

OUT0 (n), r Output from register to port n in page 0

OUTD (OTDR) Block Output, decrement HL (and Repeat)

OUTD2 (OTD2R) Block Output, decrement both (and Repeat)

OUTI (OTIR) Block Output, increment HL (and Repeat)

OUTI2 (OTI2R) Block Output. decrement both (and Repeat)

TSTIO n Test port (0,C) under mask

TABLE 18. PROCESSOR CONTROL INSTRUCTIONS

Mnemonic Operands Instruction

CCF Complement Carry Flag

DI Disable Interrupts

EI Enable Interrupts

HALT Halt

IM 0/1/2 Interrupt Mode

NOP No Operation

RSMIX Reset Mix Flag

SCF Set Carry Flag

SLP Sleep

STMIX Set Mix Flag

