Chapter 2
68HC11 Based Temperature Monitoring Board

Before we discuss the testing approach, it is helpful to know the system on which it is being
applied. In this chapter, we will describe the design and operation of the system and the way in
whichitismodeled in VHDL.

2.1 Circuit Operation

The function of the system is temperature monitoring. It is built around the Motorola
68HC11A8 microcontroller. A simplified schematic of the system is shown in Figure 2.1. The
system program is stored in the externa EEPROM. The internal RAM of the microcontroller is
used during the program execution. A latch is used for address/data demultiplexing, whereas a
decoder is used for address decoding. The purpose of external RAM will be explained in Chapter
4. A temperature transducer senses the temperature and outputs the corresponding analog output
voltage. The transducer is so calibrated that +5 V analog output represents +127 °C whereas 0 V
output represents —128 °C. The operation of the transducer is assumed to be linear. This analog
voltage is applied to an analog to digital converter (ADC) which outputs the eight bit unsigned
number representing the temperature. Hence, corresponding to 5 V, it sends out 1111 1111 ,
whereas for 0V, it outputs 0000 0000.

The ADC output is applied to one port of the Programmable Periphera Interface (PPI) through
which the microcontroller reads this value. Microcontroller XORs this value with 1000 0000.

12

This operation makes the value of the signed data equal to the actual temperature. All these steps
are shown graphically in Figure 2.2

1 2 2 4 5 =] T 2
al BEHC1 1AS HCE73 al
ICROCOMNTROLLER L&TCH
AOETIa) ETCEE- 3N —
J— 256 x 8
EEPROM EXTERMNAL RAM
- Joiw:en —
— qoiv:e; —
— -
—— T3] —] * e
BILSIE) AilEIE)
E T E
HZ13s
DECODER
Rl
Alid:13)
EMALOG TAF FROM TRAMSDUCER
[[
2255 A0OC
FPORTA
aitzay FFI
v INPACTIVE T
| g STROEE
piwen o DaTAYATL |
LCO DRIVER
FORTE
O O
1 2 2 4 = & T =]

Figure 2.1 Schematic diagram for temperature controller

13

Temperature ADC Microcontroller
transducer XOR 80H

+127°C —» 5V p 11111111 |y 01111111 (+127)

128°c —»| OV L p{ 00000000 | ! 10000000 (-128)

+13°C ——p| 276V |——p{ 10001101 | pf 00001101 (+13)

Figure 2.2 Data formats for temperature controller

Next, the microcontroller computes the ASCII codes for each numeral that makes up the
temperature value, and sends the seria stream to the LCD driver through the output port of PPI.
The algorithm for converting a signed binary number to a series of ASCII characters representing

the decimal value of the number is as follows:

1. Check the MSB of the number to determine whether it is positive or negative
2. Ifitispositive, send ASCII ‘+' to output, store the number in the accumulator and go to step
(4)
3. If itis negative, send ASCII ‘-* to output, take two’s complement of the number, store it in
accumulator and go to step (4)
4. Check the number in the accumulator.
If number > 120 D, add 168 D to it and go to step (5), else
If number > 110 D, add 162 D to it and go to step (5), else
If number > 100 D, add 156 D to it and go to step (5), else
If number > 90D, add 54 D to it and go to step (5), else
If number > 80 D, add 48 D to it and go to step (5), else
If number > 70 D, add 42 D to it and go to step (5), else

14

If number > 60 D, add 36 D to it and go to step (5), else
If number > 50 D, add 30 D to it and go to step (5), else
If number > 40 D, add 24 D to it and go to step (5), else
If number > 30 D, add 18 D to it and go to step (5), else
If number > 20 D, add 12 D to it and go to step (5), else
If number > 10 D, add 6 D to it and go to step (5), else
go to step (5)
5. Check the carry, if it isclear, goto step (6) , if it is set, it means the result is greater than 100
D. So output the most significant 1 to the output by sending 31 H (ASCII ‘1)
6. Thedatain accumulator now contains packed BCD result. So, unpack the two digits, convert
them to ASCII by ORing with 30 H and then send them one by one to the output.

The ASCII conversion processis shown in Figure 2.3

Microcontroller Microcontroller : ASCII character output To LCD driver
XOR 80H
7 s ‘o o
01111111 (+127) |—® 00110111 0011 0010 0011 0001 co01011 [»
‘g o ‘1
10000000 (-128) |——]
0011 1000 0011 0010 0011 0001 00101101 +——p
‘3 ‘o 4
0000 1101 (+13) >
0011 0011 0011 0001 00101011 |—p

Figure2.3 ASCII conversion processfor temperature controller

15

2.2 Hardwaredescription of the circuit

In the first phase of the project, the system was modeled in VHDL and self-test was run from
the model. In the second phase, the code was run from an actual system. There is a dlight
difference between the VHDL model and the actual system. This difference lies mostly in the
operation of the LCD driver which is used for displaying system’s norma operation and test
results messages. We will describe below the VHDL model of the system as shown in Figure
2.1. Theimplemented system is assumed to be similar unless the differenceis stated.

Theinitia work on VHDL modeling of the system was done by Jason Liu. | made the models
of the LCD driver and the ADC. Later on, | al'so added an external RAM and associated circuitry
to the system. The components of the system are briefly described below:

The 68HC11A8 microcontroller has 64 K of addressable space. It has 256 bytes of internd
RAM and 8 Kbytes of internal ROM. It has five ports A,B,C,D and E. The ports B and C become
the address/data lines when the microcontroller is used in the expanded mode. In the expanded
mode, external chips are connected to the microcontroller to make the whole system. In this
project, the microcontroller is used in the expanded mode. The microcontroller used in the actual
system was 68HC11E9 which has the same pins and ports as the 68HC11A8 but has 512 bytes of
internal RAM.

The crystal used in the circuit runs at 4 MHz. The microcontroller operates at ¥4h of the
crystal frequencyi.e. at 1 MHz.

An external 8 KB X2864A EEPROM is used to store the program code.

16

The interrupt vector addresses are located in the interna 8 KB ROM by default. So, the
interrupt vectors are placed at the interrupt vector addresses in the internal ROM. Also, after
power up the system starts executing instructions from the starting address of the internal ROM.
Since we are using the external EEPROM for storing the program, we write the opcode for jump
to externa EEPROM at the starting location of internal ROM.

The 74HC573 latch is used to demultiplex addresses from the shared address/data lines.

A 74HC138 decoder is used for address decoding of external chips.

An 8255 Programmable peripheral interface (PPI) is used to get additiona ports for input-
output operations. The PPI is programmed in mode 0 with its port A and upper half of port C
acting as input ports, while port B and the lower half of port C act as output ports. The digital
output of the ADC is applied to the input port A while the ASCII data representing the
temperature value is send to output port B. The lower half of port C is used for sending control

signas.

The analog to digital converter (ADC) takes an analog input voltage and convertsit into an 8-
bit digital signal. The analog input voltage ranges from O to 5 volts with the corresponding
digital output ranging from 0000 0000 to 1111 1111. It accepts the input voltage and does the
conversion process only when the control signal INPACTIVE is high. This control signal comes
from line O of port C of PPl which is made high through the system program. In the system
implementation, we applied the digital value directly to the PPI through Dual-inline-Package
(DIP) switches. There is no INPACTIVE signal for the implemented system since there is no

A/D conversion.

The LCD driver takes the 8-bit ASCII code of the characters as input and displays the

corresponding characters. There are two control signals connected to the LCD driver. When we

17

want to send a stream of characters, we should tell the LCD driver when this stream starts and
when it ends, and secondly we should tell it when the next character is to be send. So, the first
control signal DATAVAIL is high aslong as the microcontroller is sending the ASCII datato the
LCD driver. The LCD driver puts al the ASCII data in its data buffer when the DATAVAIL
signa is high and displays the corresponding characters when the DATAVAIL signa goes low.
The DATAVAIL signa comes from line 2 of PORT C of PPI. The second control signal
STROBE comes from line 1, PORTC of PPI. Before an ASCII datais to be sent, this signa is
made high. The LCD driver then treats the data at its input to be the valid ASCII data. Then the
STROBE is made low. It is again made high before sending the next character and this processis
repeated for all the characters.

For the actual system, we used the Hitachi HD44780 16 character x 2 line Dot matrix LCD
Module. The datalines of the module again connect to PORT B of the PPI. The values sent by
the system on this port are treated as either data or instruction values depending on the mode of
operation. The mode of operation is selected by the RS pin of the module. Initialization software
is also required to be written for the module. Typically, during the initialization, the parameters
set are cursor position, cursor blink/no blink, cursor and/or display right/left shift etc. Two
control signals were used from the PPI to the module. One was connected to the RS pin to select
the data or instruction mode, the other was connected to the enable E input of the module. The
module works only when the enable input is set to 1. The initialization software isincluded in the
main program given in Appendix A

2.3 System Modelingin VHDL

We made a chip level structural model of the system in VHDL. For the chips 68HC11AS8,
X2864A, P8255, 74HC138 and 74HC573, we used the VHDL modes from the Synopsys
Smartmodel[] library. For the other components i.e. ADC, LCD driver, crystal etc.,, we
developed our own behaviora VHDL models using the Synopsys Simulation Graphical
Environment (SGE). All the components were put together in SGE to form the compl ete system.

18

This system was then smulated using Synopsys VHDL simulator/debugger to confirm the
operation.

2.3.1 Smart model components usage
The step by step operation for using the Smart model library componentsis given below.

1. Open the Smart model library browser using the command:
% sl _browser

The introductory window of the library browser is shown in Figure 2.4. The main window
shows all the models of components. Due to the large number of components, it is very difficult
to find a component by scrolling this window. To avoid this, we can use the filter dialog box. It
is invoked by selecting the filter option in the Actions menu or by clicking on the second item
from the top in the vertical icon list on the left side. Thefilter dialog box is shown in Figure 2.5

There are severd filtering options. We can filter by (1) string of characters that appear in the
model name, (2) manufacturer’s name, (3) function/sub-function, or (4) licensed package name.
The results of the selected filtering process appear in the main window.

For example, in Figure 2.5, we are searching for the Intel ROMs which have a 64 in their part
name. We put *64 in the string search option, select Intel in the Vendors name list, and select
ROM in the function/sub-function list. We keep the licensed package name option disabled since
we are not looking for a specific package. After setting these options, we press the Filter button.
This starts the filtering process and displays the result in the main window. The results are shown
in Figure 2.6. After finding the desired component, we can select the option “Display data sheet”
in the Actions menu to find more detailed information.

19

Main
window

&l
|_a
@
|._
|T
&

Vertica
Icon
list

Figure2.4 Library browser window

2. Inthe VHDL source program where smart model library components are to be used, we have
to make the smart model library visible. For that, we add the following line at the start of the

program:

Li brary SMARTMODEL;
Use SMARTMODEL. COVPONENTS. ALL;

3. After finding the required component in the smart model library, we then use it in the VHDL
program. The smart model library contains a file “components.vhd” that contains the VHDL
entity level description of all the available components. From the entity specification, we can
obtain the input-output signals and generics associated with a component.

4. Inour VHDL program, we define an entity which has the same number and type of 1/0 pins

20

Figure 2.5 Filter dialog box

as the model in the smart model library. We then instantiate this entity in the architecture of the
main program. In the configuration section, we bind this instantiated component to the
architecture of the smart model component.

In our project, since we are modeling the whole system in SGE, we first need to make a
symbol for every smart model component. We then define the input-output pins whose number
and type match those of the corresponding smart model component. When we extract the VHDL
file from the symbol, it gives us the component entity with our supplied pin names and types,
empty architecture body, and empty configuration. We then instantiate the component in the
architecture. In the configuration, we bind this component with the architecture of the
corresponding smart model component. We explain this process with an example:

21

pEEEER

Figure 2.6 Resultsof thefiltering process

22

Suppose we want to use the 74573 latch in our system. First we invoke the smart model library
browser and in the string option of the filter dialog box, we enter 573. All the model names
having the string 573 appear. Suppose we decide to select the model for SN74AS573.

We then go to the components.vhd file and find the entity description for SN74AS573. We get
the following description:

conmponent ttl 573
--Avail able timng versions:
--54F573- FAI
--T7T4F573- FAI
--T7T4F573-SI G
--T7T4HC573-SI G
--T7T4HCT573-SI G
- - CD54AC573
- - CD54ACT573
- - CD54HC573
- - CD54HCT573
- - CD74AC573- EXT
-- CD74ACT573
-- CD74AC573
- - CD74ACT573- EXT
-- CD74HC573
- - CD74HCT573
-- | DT54AHCT573
-- | DT54FCT573
-- | DT54FCT573A
-- | DT74AHCT573
-- |1 DT74FCT573
-- | DT74FCT573A
- - SN64ALS573B

23

- - SN64AS573

- - SN64F573

- - SN64ABT573

--SN74ALS573B

- - SN74AS573

--SN74F573

-- SN74ABT573
generic (

Ti m ngVersion : STRING : = “SN/4AS573";

Del ayRange : STRING : = “NAX";

Model MapVersion : STRING : = “01003");
port
STD LO4A G
STD LO4A G
STD LOA G
STD LO4d G
STD LOA G
STD LOA G
STD LOA G
STD L4 G
STD L4 G
in STD_LQOA G
out STD LOG G
Y1 : out STD LOG G
Y2 : out STD LOG G
Y3 : out STD LOAG G
Y4 : out STD LOG G
Y5 : out STD LOG G
Y6 : out STD LOG G
Y7 . out STD LOA C);

end conponent;

SAMmIFERESRE™

24

We see here that there are many components that have the same input-output pins and perform
the same function, but can differ in timings and delays. The different versions differ from each
other in timings, whereas for the same version, we can choose to simulate for maximum, normal
or minimum pin to pin delay. We can put any of the available options in the generics. Here we
are putting SN74AS573 for the timing version, MAX (maximum) for pin to pin delay and the
given value for the mode version. After setting the generics, we need to reanalyze the
components.vhd file so that changes in the generics take effect. But the preferred approach is to

leave the library file unchanged and change the generics during the component instantiation.

Next we make a symbol for 74573 with the same 1/O pins as the smart model ttI573. The
VHDL output of this symbol is as follows:

--VHDL Model Created from SGE Synbol hc573.sym— Mar 19 11:02: 20
1998

l'ibrary | EEE;
use | EEE. std | ogic_1164. all;
use | EEE. std | ogic_msc.all;
use | EEE. std logic_arith.all;
use | EEE. std_| ogi c_conponents. al | ;

entity HC573 is
Port (D: In std | ogic_vector (7 downto 0);
LE : In std_| ogi c;
CE: In std_| ogi c;
Y : Qut std | ogic_vector (7 downto 0));
end HC573;

architecture STRUCTURAL of HC573 is

begin

25

end STRUCTURAL,

configuration CFG HC573 STRUCTURAL of HC573 is
for STRUCTURAL

end for;
end CFG HC573 STRUCTURAL,;

Wefill the empty architecture and configuration bodies and also make the smart model library

visible. The complete VHDL file for the component thusis:

-- VHDL Mbdel Created from SGE Synbol hc573.sym - Mar 19
11: 02: 20 1998

l'i brary | EEE;
use | EEE. std logic_1164.all;
use | EEE. std logic_msc.all;
use |EEE. std logic_arith.all;

use | EEE. std_| ogi c_conponents. al | ;

i brary SMARTMODEL;
use SMARTMODEL. COVPONENTS. ALL;

entity HC573 is
Port (D: In std_l ogic_vector (7 downto 0);
LE : In std_| ogi c;
CE: In std_| ogi c;
Y : CQut std_l ogic_vector (7 dowmnto 0));
end HC573;

architecture STRUCTURAL of HC573 is

26

begin
Ul: tt1573
generic map(
Ti m ngVersi on => “SN7/4AS573",
Del ayRange => “ MAX’,
Model MapVer si on => “01003")
port map(
D(0), (1), D(2), (3), D(4), (5), D(6), 7),
LE, CE,
Y(0), Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7));
end STRUCTURAL,;

configuration CFG HC573_STRUCTURAL of HC573 is
for STRUCTURAL
for Ul: ttl573

use entity SMARTMODEL. tt| 573(SMARTMODEL) ;
end for;

end for;

end CFG_HC573_STRUCTURAL;

We apply the same procedure to al the components and then interconnect al the symbolsin
the SGE schematic editor to create the model for the whole system. The complete model of the
system isshownin Figure 2.7

2.3.2 Additional VHDL models
For the purpose of simulation, and also for good observability of signals during simulation, the
following additiona VHDL models are included in the system:

The component Control is used for assigning permanent ‘1’ or ‘0" to some pins of the

microcontroller. For example, to set the mode as expanded mode, the pins MODA and MODB of

27

the microcontroller must both be made ‘1'. Also, the interrupt pins XIRQ and IRQ should be
made ‘1’ since they are not used here. The OE pin of the 74573 latch had to be made ‘0’.

The component Connector connects the 8-bit bus A(15:8) to 8 separate pins. By giving its
input the name AD(15:8), we can then combine it with the multiplexed bus AD(7:0) so we can
trace the complete address A(15:0) as a single signa on the waveform viewer of the VHDL

simulator.

The reset of the 8255 is of opposite logic value to the reset of the microcontroller. So, a
component inverter is used which is connected between the reset pin of the microcontroller and
the 8255.

During simulation, we enter the analog signa vaue from the standard input i.e. keyboard. To
take this input and give it to the ADC, we have made the model Analog Therm2. This
component is activated from the line 0 of PORTC. It operates in Text I/O mode of VHDL and
after activation, takes the input real number and passes it to the ADC through its output port of
type real. The VHDL source listing of the main program and all the components is given in

Appendix C.

2.3.3 Memory imagefile (MIF)

Memory components in the Smartmodel Library use the concept of a memory image file to
load the memory content at the beginning of simulation. Each line of the .mif file contains the
address and data for one memory location. Address and data must be separated by a slash;
whereas at the end of the data, a semicolon is required. An example .mif for an 8 KB memory is

given below:

28

CONTROL
RESET|—RESET
-~ MOD——H0DE
2 MODE—HODE
e =3 At 4 puts i GEEL
L3 e]
n gw , Emuww HELSS A (2:@) -
Y wooQ UZ W W 915_21 Vi@ p——HCL32 Y (V@)
—E [[rif, 171118 =
J = W awo I Jrmuws -y
I 400 O W W W
[20 TIadoan
®TaL— TAI.mx = FES—FE(S)
— anie) —ue FEL—FEii]
aniL) —al FE4—FE (4] ACE 7=
an iz) ——E FE@—FE (@] SO TE) ——D (Ti@)
an 3 —p3 HCtas i RO (S] s | = V(TR —RESEd_A(TI)
AD A ——fa A O] SHD—0E
ab(s) —s El@—aDi1a) L
ADE) —RE All—AD0il)
B a7 I— T alEl—aO1E)
RESET—RESET 1A —aD (1]
(el IR Gid—a01d) CONNECTER:
(== 1R T ALE—AD (1S] éﬁz; é?aa_mz)
FO(@)—FD2 Fra—Fa[a]) Z(E)—HCL3=_A(1)
LR TR O T o N Tid)|—REscd_Ai1E
odooo I414434d4d ADAS: S =L iTz @l zE!%—stsaﬁEu;
Liowd ediedie Zizi[Reccaaiia)
| - TTTTTTTTTTTT1 zit)| rzesa_ais)
4 L T N N N Zie)|—REEed_AlE])
u AN Moo f-w MmN —
[ooooo0 444 4dddd
I3 [o o o o o o
m FEH_F
ar rz RESEA_f (710 | =——aDR (72 @) —
IMFACTIVE
RESES_A (12:)= (12:9)
o aoiTIa) o7 GHO—cE o7 f—an T
RE 1_zz HC138_ ¥ (7)—fE
— RESEA_A[1Z) CE_ 0E WE HC 132 Y (&) —E
. = RESE47A(11]) 1
LG I RESSA_A(1@)
woC—RUM DETOUT (73 @) [~—FORTAIT: @) RZEEd_A03)
E—LkK RESES_A(S) b '
Ii3 woo
u oo
- ¥ ¥
CCO_DRIVERE
FORTC (1) ——STROEE
PEO Fazss
FORTE (7: @) ==t T4 (720 HE13E_Y (5] o Di7:@)0 (7220
HC132 Y (4) ——RR . .
RESET. SET Fa(7:@) =—FORTa (7:@)
RESEA_A (1) —pal - -
o - Faced hia) Lo FE(7:0) fm—FORTE (7: @]
D’ D == FC(7:@) p=FORTC(7:@]
4 Iio
o
[

Figure2.7 Complete model of temperature control system

Menory image file for an 8 KB nenory
0000/ 1A;
0001/ 2C;
0002/ 34;
0003/ 55;

1FFD/ 22,
1FFE/ FB;

29

1FFF/ 38;

A # symbol at the start of aline denotes a comment. The data and address are assumed to bein

hexadecimal form.

To convert an HC11 assembly program to Memory Image File format, two programs are
needed, CASM11.EXE and IMAGE.EXE. @ CASM1l is a commercia program used for
converting assembly to object code while IMAGE is written by Jason Liu in C to convert the
object code to a.mif file. Both of these programs run on a PC. Therefore, the assembly program

must be assembled and converted to .mif file on a PC.

In our temperature monitoring system model, the assembly program must be loaded into the
external 2864 EEPROM and the interrupt vectors must be loaded into the internal ROM of the
68HC11. The trandator program IMAGE transates the executable file (.s19) produced by the
CASM11 assembler into memory image file format. Two files are produced upon execution of
image.exe, memory.mif and rom.mif. Memory contents at address $6000 - $7FFF are stored in
rom.mif; all others are stored in memory.mif. The interrupt vector addresses are located in the 8
KB ROM which is interna to the microcontroller. These addresses are loaded with interrupt
vectors by the file “memory.mif”. Also when the system powers up, it starts its operation from
the location EO0O, which is the first address of the internal ROM. Since we are using the external
EEPROM as the storage location for our system program, we write the opcode of the jump
instruction at EOO0 which then jumps to the external EEPROM for executing program
instructions. This opcode at EQOO is aso written in the “memory.mif” file. At the beginning of
the simulation, EEPROM 2864 |oads memory from rom.mif; and 68BHC11A8 loads memory
from memory.mif. The translator image.exe is specifically written for the temperature monitor
model. [f the external EEPROM is mapped into different addresses or there are more external
ROM or RAM, the trandator must be modified. The source file image.cpp is included in
appendix B.

30

The syntax for running the assembler is:

casmll <fil ename. ASM> | s

With the option ‘s, we are telling the assembler to form the object code in Motorola hex
format. The resulting file has the extension .s19. With the option ‘I’ (lower case L), we are
telling the assembler to make a list file (.Ist) also which contains the object code as well as

source listing of the code.

The syntax for running the image program is

i mge <fil enanme. s19>

This gives us the two files, rom.mif and memory.mif as described above. After analyzing the
system model, we then have to simulate it using the VHDL simulator/debugger. We need to
transfer the .mif files from the PC to the Sun Sparc platform before starting the simulation.

A control file was written in Synopsys Simulation Control Language (SCL) to aid the
simulation process. The control file specified the signals to be traced and generated an output
window to show the results. These input and output windows are shown in Figures 2.8 And 2.9
respectively. The control fileis given in appendix C.17

s

[

Figure 2.8 Input window

31

Figure 2.9 Output window

2.4 Hardwareimplementation of the system

In the second phase of the project, the system was actualy implemented in hardware. This
implementation was done on the 68HC11 EVBU trainer kit and prototyping strips. The system
was connected to a host PC through a serial port. The host software PCBUG11 was used to
control, monitor and debug the activities on the system. The following sequence of steps were
taken :

(1) Build the system using 68BHC11 EVBU, external chips for EEPROM, latch, decoder, PP,
display and control, and the prototyping wires

(2) Connect the system to the PC through the serial port

(3) Set the jJumper settings on the system corresponding to the special bootstrap mode of the
microcontroller. In the bootstrap mode, the system can read in the program code from the
outside using the serial communications interface of the microcontroller [SpasovP96].
The PCBUG11 software communicates with the system in the bootstrap mode only.

(4) Turn on the system

32

©)
(6)

(7)

(8)

(9)

Run the PCBUG11 software from the host

Whenever the 68HC11 powers up, it starts executing instructions from the internal
location $B600. Since we are using the external EEPROM for program storage, we need
ajump to the starting address of the external EEPROM from this location. To do this, we
first need to define the internal EEPROM |ocations and then unprotect them i.e. make
writing on them possible. We use the following commands from PCBUGL11.:

MS $1035 $10
EEPROM $B600 $B7FF
Write the instruction for jump to external memory location at the location $B600.
ASM $B600
JMP $6000

In the bootstrap mode, the microcontroller operates in a stand alone mode and does not
recognize the external circuitry attached to it. To load and run the program on externd
EEPROM, we first need to define the externa EEPROM locations and then change the
operating mode of the microcontroller to expanded mode. Use the following commands:

MS $103C $26
EEPROM $6000 $7FFF

Load the object code file (.S19) of the system on the external EEPROM using the

command:

LOADS FILENAME.S19

(10) Run this program from the system using the command.:

G $6000

Steps (6) and (7) can aso be done in another way. We can define a macro and put the

PCBUGL11 instructions in it and can then execute them all at once. The following macro was

written for the sytem:

DEFM INIT

BEGIN

33

MS $1035 $10
EEPROM $B600 $B7FF
MS $103C $26
EEPROM $6000 $7FFF
END
Run the macro using the following sequence of commands:
LOADM INIT.MCR
INIT
Once the macro is loaded, we can then load a program into memory and run it.

To run the program previously loaded into the external EEPROM, we just need to change the
jumper settings on the EVBU corresponding to the expanded mode. Then we power on the
board. The system will start from $B600 and then jump to the system program at externa
location $6000.

