&S 9 li
2] F=06H)]
2 9Z2 B0 | DICIO2T] |2 | 22T | 247

24 AH
(=R

i
Q
0

=
L TT BA O

2008/09/15 22:47

=8 FHE22)|HIBM)— SHE HHSILICH | A =(ESHEM) | A
http://www.sparkfun.com/commerce/tutorial info.php?tutorials id=105

Lecture 5 - AVR GCC Compiling

Sorry for the confusion. When these tutorials were written and photographed, we used the ATmega8. We now carry
the newer ATmegal68. You will find all ATmegal68 information in the following pages, but the pictures will show
an ATmegaS8.

I know very little about the ins and outs of the AVR-GCC compiler. I've learned a few basics that helped me along
the way, but when you run up against a jam, google and AVRfreaks.net are your friend.

First, we did the blinky. Open this code in PN2 and make sure you can compile it. Click on Tools->Make All. The
window in the bottom screen should say 'Process Exit Code: 0' meaning the compilation was successful. If not, there
should be a line number listing of the problem line of code. Be sure to check above and below the indicated line for
problems.

In the second example C file called basic-out-atmegal 68.c (basic-out.c for the ATmega8), I've inserted a handful of
functions and lines of code. First of the black magic:

#define FOSC 16000000
#define BAUD 9600
#define MYUBRR FOSC/16/BAUD-1

What is all this noise at the top of the file? This is a series of defines that calculates the MYUBRR variable with the
correct number. Since serial communication depends on the fact that we will be transmitting and receiving at 9600
bits per second, it's crucial to tell the ATmegal 68 what bit rate to set. Because the ATmegal68 is dictated by the
oscillator that it is using, we must correctly calculate what value we need to load into the ATmegal 68 hardware so
that the ATmegal68 sends the serial pulses at the correct rate with a given oscillator type. In our case, we are using a

16MHz oscillator so we can setup the define statement as shown. MYUBRR is calculated at compile time and is
loaded successfully into the hardware UART during run time.

A reader's untested submission:
The UBRR value calculation in Lecture 5 could be more accurate with the following macro:
#define MYUBRR ((((FOSC * 10) / (16L * BAUD)) + 5)/10) - 1)
There is also pretty useful web form for UBRR calculation:

http://www.wormfood.net/avrbaudcalc.php

static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL, FDEV_SETUP_WRITE);

This line creates a buffer for the printf statement to post to. I'd rather not explain it, simply because I don't understand

it. When I am working on a new coding project I never start from a blank page, I *always* start from a known
working program and slowly bring in bits of other projects to get the code I need, writing bits along the way. Please
start from this printf example and build away. The purpose here is to get your printing string to the terminal window.

Checkout the ioinit() function. You'll notice some new commands.
UCSROB = (1<<

This is the really funky, but very practical, method of setting bits on the AVR series. RXENO is defined in some file
as'5'. 1<

Finally, we see the very comfortable line of code:
printf(" Test it! x = %d", x);

What did you say? This is not a comfortable line of C code for you? Ok - printf is somewhat of a universal function to
pass serial strings and variables to the outside world. The line of code above will pass the string "Test it! x =" to the
serial port and it should display on the terminal window. After that, the %d gets converted to an actual decimal
number so that whatever digital number is currently stored in the variable x gets printed to the terminal screen. So
what? This simple printf statement allows you to print variable contents and see what's going on within your C
program.

Time to load the basic-out-atmegal68.c file onto your breadboard. Open up PN2, compile basic_out-atmegal68.c.
Power up your board, click on Tools->[WinAVR] Program from within Programmer's Notepad. The code should now
be loaded onto your ATmegal68. If WinAVR throws a verification error, try again. Open up the terminal window at
9600bps if you don't already have it open.

+ IisMandiay! - Hyger Tecminal

e B2 ‘Wew Cal Tronsles fels
O & DE 5

Test 11" w = 1Test 11! x = 2Test $t! x = 3Test 21! x = &Test 34 w = STest 11! u
Corrmtbed s =11 fafs dedert el S FLpE 3

Text output from the ATmegal68 and MAX232 circuit

All right! We've got output from the ATmegal68! Now let's talk about some more of the code:
sbi(PORTC, STATUS_LED);

Another funky one if you're not used to the AVR series. To toggle a GPIO pin (general purpose input/output pin), you
need to read the state of the port, mask the bit change into the state-word, and then write the 8-bits back onto the port
effectively modifying just the one bit. Instead of doing all that by every time you want to toggle a port pin, there's this
handy macro:

#define sbi(var, mask) ((var) |= (uint8_t)(1 << mask))

SBI sets a bit. CBI clears a bit. You have to specify which port you're working with and which pin you want to alter.

Throw another define at the top of your code:
#define STATUS_LED 0

Now you can control your STATUS LED on PORT C using these two simple commands:
sbi(PORTC, STATUS_LED);

To turn on the LED and
cbi(PORTC, STATUS_LED);

To turn it off.

You should have an LED tied to pin 23 on the ATmegal68. When in doubt, toggle your status LED to figure out
where the code is hanging or use a printf statement.

There are also some tweaks to the delay ms() routine. Because we increased the oscillator from 1MHz to 16MHz, |
increased the loop iterations to tie up the processor for longer. I didn't do any real calculations so don't depend on my

delay ms routine. delay ms(1000) looks to be roughly a 1 second delay.

Open basic-in-atmegal 68.c (basic-in.c for the ATmega8) and load up your breadboard:

+ InMopday! - Hyper Teeminal E|EE|
e Ef ¥Wew Cal Jransler el

O » G &

heard -
eard
heard :
heard
heard :
heard :
heard :
RE TURN
heard :
heard :
hieard :
heard :
heard :
heard
heard
hiesard
heard -
heard :
heard :
heard :
EMLT
heard. :
G

oA RS .

et] et] e e

B -a

(=] et i et] et] e b e e e
HKemid O -

=]

W anrmied 0 33 17 Pt dolod Dl B L

Key presses and various responses

Here we see that whatever character we hit, the ATmegal 68 responds with 'l heard : ' and the character. Also, if you
hit return, X, or g, you will see various special output.

key_press = uart_getchar();
printf("'I heard : %c\n", key_press);

if(key_press =="g") printf("" GO!\n");
if(key_press =='X") printf("" EXIT\n");
if(key_press == 13) printf(" RETURN\n");

uart getchar sits waiting for a character to appear in the UART. Once received, the ATmegal 68 outputs the character
(%c) and goes to a new line (\n). It then checks to see if the key press was one of three special cases. If so, it prints an
extra string accordingly. I hope you are starting to see the power of the input/act-upon/output that a microcontroller is
capable of. With a little bit of work, you could program your own text-based adventure game. Go to town.

Remember back when you were struggling to get your power supply wired up? Nice job! Time to heat up your irons.

We love feedback! Please report typos, comments, or recommendations to

ojoHE &4t

O|F: ZM % (&, & ThsA|) O|E: oA 3| (0, Tt THoA|)

Xk 19784 98 132 ™y 2xk1083u 738 20

Ta HEEUA GSET, RS) Ea29E olerd Lojs+8%
B oA 5 wal = S5 02= 220 v A2l B0l 2

AF, d20| S2HO

Supported by Needlworks, Of 2l 0| X ct

Posted by E 2 Ui
EEH HH O . CH:- 0

< PREV :[1]:[2]:[3]:[4]:[5]: ... [132] : NEXT P

=B U4l

S XAt

Jtell 1 el

AL

2 ML (132)

0tOIE_E & (39)
A l:l (6)
KHEHZ ZH (0)
=22 (20)
MBI (5)

HE (2)

LA (5)
A3t (2)

PDAS (9)

CHAI O LA KT (3)
HI|E X (32)
MAC OSX86 (2)

Z20 S22 =

M m m m m o o o m m m m

e [E] Lecture 5 - AVR GCC..

e DIY GPS Hacking Projects

e Eagel CADUI Al EHIEt / Fr..
e Eagle CAD tutorial

e SpokePOV
e mp3 LIREE ZZ) -

o M2 GIOIH A% Sirf2..
e [&]PICI8LF25502.4GHzS..
e [&] AVR Tutor - C langua..

e [B] MAKE: AVR oscilloscope

Z20 €&l =

220 ge S

c -

Total : 17,685
Today : 63 Yesterday : 39

=SS
= 228

o 2008/09 (19)

o 2008/08 (26)

o 2008/07 (25)

o 2008/06 (19)

o 2008/04 (3)
Clted
=27

2 2 3}
1 2

7 8 9
14 15 16
21 22 23
28 29 30
g3
SSX20 (D | SHE | ZRAK | 2MO
=

E|AEZ] 71251

[x] tistory

« 2008/09 »

10
17
24

A
e

11
18
25

Uli's Blog is powered by Daum & Tattertools / Designed by Tistory

Jo

12
19
26

oy

13
20
27

