
I²C EEprom with Driver for Extension Card
for the K1-Bus

Version 1.12
Date 2013-04-13

This Document describes the layout of driver EEproms on K1-Bus peripheral
cards and the bytecode used for universal drivers.

The K1-Bus is a simple 16-bit peripherals bus for home-built computers.
For a description of the K1-Bus hardware and circuit examples, see http://
k1.spdns.de/Develop/Hardware/K1-Bus/.

The I²C EEproms on K1-Bus extension cards contain universal driver software
in bytecode for a simple virtual machine. This universal driver may be used by
the host system to install an extension card if it does not provide own drivers for
the card in it's own BIOS.

Content
EEprom layout pg. 2
Chunk descriptions 3
Predefined functions 8
Device types 9

System Timer Device 9
Serial Device 10
Block Device 12
Summary of ioctl function numbers 13

Bytecode 14
Data Types 14
Data Access 15
K1-Bus Data I/O 15

Opcodes sorted by code 17
Discussion of all Bytecode opcodes 21

Notes on dynamic memory 31
Notes on systems with movable dynamic memory 31
Notes on systems with unusual word size 32
Notes on using same size for int8 and int16 32
Notes on code optimization 33

Change log 34
To Do 34

http://k1.dyndns.org/Develop/Hardware/K1-Bus/
http://k1.dyndns.org/Develop/Hardware/K1-Bus/

EEprom Layout
The EEprom is organized in chunks of data. Chunks start immediately at
EEprom address 0 and follow each other without gap.

Data Types Used in Chunk Definitions:
int8 1 byte unsigned integer number in range 0 … 255
int12 1 or 2 bytes unsigned integer number in range 0 … $0FFF

1 byte = 0 … $EF or
2 bytes = n + $F000; high byte first.

TYPE[] Variable-length array of TYPE. Preceded with an int12 length prefix.
str Text string: int8[] length-prefixed array of characters,

Ascii or Latin-1. (7- or 8-bit subset of Unicode.)

General Layout of Chunks:
A chunk starts with a 1-byte chunk ID followed by length-prefixed data:

int8 BTYPE chunk ID
int8[] DATA length-prefixed data

Predefined Chunk IDs:
Chunks "0" – "5" and "A" – "D" must appear in this order.

* = mandatory block
** = may occur multiple times

BTYPE "0" * EEprom identification
BTYPE "1" * Device information: bit fields
BTYPE "2" * Short device name for installation into a device directory
BTYPE "3" * Short card name for display during boot process
BTYPE "4" * Short card and driver version
BTYPE "5" * Short copyright message
BTYPE "6" Longish license and copyright text or url
BTYPE "7" Longish information and help text or url
BTYPE "A" * TYPEDEFS – Data type definitions
BTYPE "B" * GLOBALS – Global variables
BTYPE "C" ** PROCDEF – Procedures and interrupt handler
BTYPE "D" * End of data
BTYPE "E" Erased block
BTYPE "F" COMMAND – Loadable shell command

Reserved Chunk IDs:
BTYPE $00 – $5F (e.g. numbers and uppercase letters) are reserved.
BYTPE $60 – $7F (e.g. lowercase letters) may be used by the driver.

Chunk Descriptions

BTYPE "0" * EEprom Identification
Required. The first chunk in the EEprom identifies the EEprom.
BTYPE '0'
DATA "K1D1xxxx" // length-prefixed string

Substring "K1" says it contains chunked driver data, substring "D1" says it is
data format version 1. Then 4 arbitrary characters follow. These can be used by
a system to quickly identify the board and determine whether the system has
it's own drivers for this board.

BTYPE "1" * DEVINFO – Device information
Required. The second chunk provides technical information about the device.
BTYPE '1'
DATA int8[] // bit fields and bytes

DATA[0] DEVCLASS_1 = Device Class:
bit.0 INPUTDEV 1 = Input Device
bit.1 OUTPUTDEV 1 = Output Device
bit.2 SERIALDEV 1 = Serial i/o
bit.3 BLOCKDEV 1 = Addressable Block i/o
bit.4 TERMINAL 1 = Potential Controlling Terminal
bit.5 WIDEDEV 1 = uses int16[] buffers and 16-bit i/o
bit.6 VIDEODEV 1 = Video Device
bit.7 AUDIODEV 1 = Audio Device
DATA[1] DEVCLASS_2 = Device Class:
bit.0 KEYBOARD 1 = Keyboard
bit.1 POINTER 1 = Pointer Device (Mouse, Joystick)
bit.2 TIMERDEV 1 = Timer Device (System Timer)
bit++ Reserved. set to 0
DATA[2] DEVREQ = Device Requirements:
bit.0 A4A5REQ 1 = Requires bus address lines A4 and A5
bit.1 FASTBOUT 1 = Supports burst-mode block output

(no data hold time after strobe)
bit++ Reserved. set to 0
DATA[3] IOSPEED = minIOCycleTime[µsec]*128;

e.g. 128 = 1µs
DATA[4] INTPRIO = interrupt priority hint:

 -log2(maxIntLatency[sec]);
e.g. 0=1s, 10=1ms, 20=1µs

DATA[5] SUBDEVICES = number of subdevices or channels

BTYPE "2" * Short device name
BTYPE '2'
DATA str // e.g. "hd"

Required. This chunk provides a name for installation of the device into a
device directory. Recommended names are "hd" for block devices and "sio" for
serial devices.

BTYPE "3" * Short card name
BTYPE '3'
DATA str // e.g. "FooCard"

Required. This name may be displayed during boot process.

BTYPE "4" * Short card and driver version
BTYPE '4'
DATA str // e.g. "1.0a"

Required. The version number may be displayed during boot process.

BTYPE "5" * Short copyright message
BTYPE '5'
DATA str // e.g. "(c) 2012-2013 kio@little-bat.de"

BTYPE "6" Longish license and copyright text or url
BTYPE '6'
DATA str[] // Array of strings

This chunk contains license and copyright informations.
DATA is a 2-dimensional array of characters: str[] is a length-prefixed array of
strings, which are length-prefixed arrays of characters (bytes).
The str[] array contains one paragraph per string. No line breaks required.

BTYPE "7" Longish information and help text or url
BTYPE '7'
DATA str[] // Array of strings

This chunk contains usage and help informations.
The str[] array contains one paragraph per string. No line breaks required.

BTYPE "A" * TYPEDEFS – Data Type Definitions
Required. This chunk defines the custom struct data types used by the driver
bytecode.

BTYPE 'A'
DATA int8[][] // Array of int8[] data member lists

Data types are referenced by small integer numbers in the bytecode and in the
TYPEDEFS, GLOBALS and PROCDEF chunks.

This chunk contains a list of data member lists for all custom struct types.
The first list defines the data members for struct type ID = 7, following lists
define following type IDs.

Struct types are referenced in Bytecode by their position in this list.
Struct members are referenced by their position in their respective member list.

Predefined bytecode data types:

(don't mix these up with data types used for chunk definition)
00 void
01 int8 unsigned integer: ≥8 bit
02 int16 unsigned integer: ≥16 bit
03 pointer pointer to array or struct
04 int8[] array of int8
05 int16[] array of int16
06 pointer[] array of arrays or structs (not used in Bytecode)
≥ 7 custom struct types as defined in this TYPEDEFS block

void is used for procedures which do not return a value.
int8 (bytes) are at least 8 bit wide but may be longer. int16 (words) are at least
16 bit wide but may be longer. Systems may actually use the same size for int8
and int16. Values on the data stack are always int16.
Bytecode only supports UNSIGNED integer numbers.
Arrays like text strings and structs are allocated dynamically and are referenced
by pointers.
For more information on data types see the section about Bytecode below.

BTYPE "B" * GLOBALS – Global Variables
Required. This chunk defines the global variables used by the driver.
BTYPE 'B'
DATA int8[] // List of data types

Global variables are referenced in Bytecode by their position in this list.

Data types are 0 to 6 for the predefined basic types and data types ≥ 7 are
assigned to custom struct types as defined in the TYPEDEFS chunk.

Global data is initially cleared with 0. Arrays and structs must be allocated
explicitly in function init().

Global data must start with n struct variables, with n = number of channels or
subdevices, which should contain all data for the channel. A reference to one of
these structs is the first argument in most public procedures of the drivers.

BTYPE "C" ** PROCDEF – Procedure or Interrupt Handler
BTYPE 'C'
DATA int12 block length

int8 Procedure reference number (ID)
int8 return type: void or int16
int8[] Type list of procedure arguments
int8[] Type list of more local variables
int8[] Bytecode

Required, multiple. Each PROCDEF chunk defines one procedure. It defines a
function reference number, a return value type, an arguments type list, a local
variables type list and the bytecode for this procedure.

Reference numbers must be unique. Procedures are referenced in Bytecode by
their reference number (ID). A procedure can only call procedures which have
already been defined. For each device type there are some predefined public
functions with IDs in range 0 to 31. Internal functions may use IDs in range 32
to 127.
The return type may be either void or int16.
Arguments and local variables may be of any type except void.
The arguments type list and the local variables type list are concatenated by
the bytecode loader to form a combined local variables list. Local variables are
referenced in Bytecode by their position in this combined list.

BTYPE "D" * End of Data
BTYPE 'D'
DATA int[0]

Required. This chunk marks the end of valid data in the EEprom. Any data
beyond this chunk is void. The DATA consists only of a length prefix which is 0.

BTYPE "E" Erased Data
BTYPE 'E'
DATA int8[]
This chunk can be used to erase a chunk without moving all subsequent
chunks. Also, if you overwrite a chunk with a shorter chunk, an "erased data"
block can be used to fill the remainder. If the new chunk is exactly 1 byte
shorter try to use a 2-byte length descriptor for the new data.

BTYPE "F" COMMAND – Shell Command etc.
BTYPE 'F'
DATA int12 block length

str Procedure name
int8 return type: void or int16
int8[] Type list of procedure arguments
int8[] Type list of local variables
int8[] Bytecode

COMMANDs are not loaded during boot time but may be loaded and executed
at runtime to provide useful functions. The return value should in general be an
error code with 0 for ok. See PROCDEF for description of the contents.

COMMANDs should follow after the last PROCDEF chunk.

COMMANDS are still under development.

Predefined Functions
Function definition syntax: <procID>: <return_type> <name> (<arguments>)

0: void init ()
Required. All devices must have an init function. init() is the last procedure
loaded by the boot loader.

After loading init(), global data is cleared with zero and then init() is called to
initialize the hardware and to allocate and initialize global arrays and struct
variables. Eventually some other initialization functions are called after init(),
e.g. systemtimer().
After that, all disposable functions are purged. All procedures, which are only
called during initialization are disposable. These are the public procedures init()
and systemtimer() and all internal procedures which are only called by these.
i.e. internal functions (32 ≤ ID ≤ 127) are disposable, if they were defined after
the last non-disposable public function.
init() is called with the device selected and interrupts turned off.

8: void irpt ()
Most devices generate interrupts. irpt() is called by the system to handle these
interrupts.

If a device signals an interrupt, then the system disables interrupts, selects the
device and calls the device's interrupt handler function irpt(). On return, it
deselects the device, enables interrupts and returns to the interrupted main
program.

When the driver code calls irpt() directly, e.g. to restart output of a serial
device, then the bytecode loader must add di before and ei after the call, if it
does not add these opcodes to the irpt() procedure itself.

Note: interrupts become enabled after calling irpt().

All i/o on the K1-Bus goes to the currently selected device. The i/o address,
which is part of the in and out opcodes, is only used to select registers in the
device.

irpt() may be called erroneously.
irpt() is called with the device selected and interrupts turned off.
irpt() must effectively switch off the hardware interrupt.
irpt() must not allocate or dispose memory, therefore it cannot allocate local
arrays or structs.

Device Types
So far, the following device types have been defined:

• System Timer, defined in version 1.0
• Serial Device and defined in version 1.0
• Block Device. defined in version 1.0

Keyboard, pointer and audio will be based on serial, video on block devices.

System Timer Device
A timer device is identified by bit TIMERDEV in DEVINFO. A timer device can
provide a regular system timer interrupt.

A Timer Device must provide:

 1: int systemtimer (int period_µs)

If the system has no own system timer, it will call systemtimer() after init() but
before all disposable functions are destroyed.
The argument is the desired timer period in microseconds.
Legal values are in range 1000 (1000Hz) to 20000 (50Hz).
systemtimer() sets up the timer interrupt and returns the actually used timer
period in microseconds.

systemtimer() is called with the device selected and interrupts turned off.
The irpt() function must execute the timer opcode once per timer interrupt if the
timer was enabled by a call to systemtimer(), else the device should not
generate the timer interrupt at all.

Serial Device
A serial device is identified by bit SERIALDEV in DEVINFO. A serial device
provides buffered serial input and/or output of data. The number of channels is
defined in DEVINFO in byte SUBDEVICES. Serial devices may be 8 or 16 bit
wide. Bit WIDEDEV in DEVINFO identifies a 16-bit device. Most serial devices
are 8 bit wide.

Note: channel is one of the first n structs (n = number of subdevices) in the
device's global variables. data is int8 or int16 depending on device size.

A Serial Device must provide:

 9: void setctl (channel, int function_code, int value)

setctl functions:

00 reset channel
01 set serial speed to value * 100
02 set HW handshake on/off
03 set SW handshake on/off
04 purge (clear) input buffer
05 purge (clear) output buffer

 10: int getctl (channel, int function_code)

getctl functions:

01 get serial speed / 100
02 get HW handshake state
03 get SW handshake state
04 get available (non-blocking) bytes in input buffer
05 get available (non-blocking) space in output buffer

A Serial Input Device must provide:

 11: int getc (channel)

Read one byte from the serial channel.
Blocking!

 12: int gets (channel, data[], int a, int e)

Read data[] from index a to e-1 from the serial channel.
a and e must be in range 0 ≤ a ≤ e ≤ data.count. e may be == a.
May read less. Returns actual number of bytes read.
Non-blocking.

A Serial Output Device must provide:

 13: void putc (channel, int char)

Write one byte to the serial channel.
Blocking!

 14: int puts (channel, data[], int a, int e)

Write data[] from index a to e-1 to the serial channel.
a and e must be in range 0 ≤ a ≤ e ≤ data.count. e may be == a.
May write less. Returns actual number of bytes written.
Non-blocking.

A Controlling Terminal must provide:

• Serial Input
• Serial Output

A potential controlling terminal is identified by bit TERMINAL in DEVINFO.
Eventually one data direction may be missing if two disjunct serial lines are
used for keyboard and monitor.

Block Device
A block device is identified by bit BLOCKDEV in DEVINFO. A block device
provides i/o of addressable blocks of data of a fixed size. Block devices may be
8-bit or 16-bit devices, accordingly with int8[] or int16[] buffers. A 16-bit block
device is identified by bit WIDEDEV in DEVINFO. The number of subdevices is
defined in byte SUBDEVICES in DEVINFO. A block device may contain up to
2^32-1 blocks. The block number is split into a high and a low int16 value.

Note: subdev is one of the first n structs (n = number of subdevices) in the
device's global variables. data is int8 or int16 depending on the device size.

A Block Device must provide:

 9: void setctl (subdev, int function_code, int value)

setctl functions:
00 reset subdevice

 10: int getctl (subdev, int function_code)

getctl functions:
07 get log2(blocksize) note: blocksize must be 2^N
08 get total blocks (low)
09 get total blocks (high)

 15: int readblocks (subdev, int start_hi, int start_lo, data[], int a, int e)

 16: int writeblocks (subdev, int start_hi, int start_lo, data[], int a, int e)

Read or write data[] from index a to e-1 from or to subdevice.
a and e must be in range 0 ≤ a ≤ e ≤ data.count.
e-a must be a multiple of blocksize and may be 0.
start_hi + start_lo define the starting block number.
Blocking!

Note: Depending on the byte order on the data stack the target system
may actually use one int32 for the starting block number when calling
readblocks() or writeblocks().

Returns error code:

0 ok
1 parameter error / function not supported
2 io error
3 device not responding / device not present

Summary of ioctl function numbers:
0 set ioctl_reset
1 set/get ioctl_sio_speed
2 set/get ioctl_sio_hw_hsk
3 set/get ioctl_sio_sw_hsk
4 set ioctl_sio_purge_input
5 set ioctl_sio_purge_output
4 get ioctl_sio_input_avail
5 get ioctl_sio_output_free
6 ioctl_sio_reserved1
7 get ioctl_blk_log2blocksize
8 get ioctl_blk_totalblocks_lo
9 get ioctl_blk_totalblocks_hi
10 ioctl_blk_reserved2

Proc IDs of predefined public procedures:
Proc IDs 0 to 31 are reserved for predefined public procedures.
Proc IDs 0 to 7 are disposable.

0 void init () disposable
1 int systemtimer (int µs) disposable

8 void irpt ()

9 void setctl (channel, int function_code, int value)
10 int getctl (channel, int function_code)

11 int getc (channel)
12 int gets (channel, data[], int a, int e)
13 void putc (channel, int char)
14 int puts (channel, data[], int a, int e)

15 int readblocks (subdev, int start_hi, int start_lo, data[], int a, int e)
16 int writeblocks (subdev, int start_hi, int start_lo, data[], int a, int e)

Bytecode
The I²C EEproms on K1-Bus extension cards contain universal driver software
in bytecode for a simple virtual machine.
Bytecode instruction are one byte each. Some instructions have inline
arguments. They are designed to allow simple 1:1 translation into short code
snippets. This can either be real machine code for the target system's CPU or
code for a forth-style interpreter.
Supported data types in memory are int8 (unsigned bytes ≥ 8 bit), int16
(unsigned words ≥ 16 bit), pointers to dynamically allocated int8 or int16
arrays, and pointers to dynamically allocated custom struct types. The
bytecode supports memory models with movable memory.
A separate data stack is used for local variables and intermediate values. It is
probably possible to compile Bytecode into register-based machine code, but
this is more tricky. Values on the data stack are int16 or pointers, which may
be of a different size. int8 data must be padded with 0 when put on the stack.
For simplicity, returning pointers from procedures is not supported.
Variables come in four styles: global, local, array item and struct member.
Variable accessors are followed by a variable reference which specifies which
global or local variable to access, or by a struct type reference and a struct
member reference in case of structs.
For an example of translating a high-level source into bytecode see:
compiler: http://k1.spdns.de/Develop/Projects/vicci
driver: http://k1.spdns.de/Develop/Hardware/K1-Computer/IO-Boards/SIO

Data Types
Data types as used in TYPEDEFS, GLOBALS and PROCDEF chunks and for
data type reference T in some opcodes:

00 void
01 int8 unsigned integer: ≥ 8 bit
02 int16 unsigned integer: ≥ 16 bit
03 pointer
04 int8[] array of int8
05 int16[] array of int16
06 pointer[] array of arrays or structs (not used in Bytecode)
≥ 7 custom struct types as defined in the TYPEDEFS chunk

void is used to declare the return type of procedures which return no value.

int8 'bytes' are at least 8 bit wide but may be longer. int16 'words' are at least
16 bit wide but may be longer. Systems may actually use the same size for int8
and int16. See 'Notes on using same size for int8 and int16'. Bytecode only
supports UNSIGNED integer numbers.

http://k1.dyndns.org/Develop/Projects/vicci
http://k1.dyndns.org/Develop/Hardware/K1-Computer/IO-Boards/SIO

Values on the data stack are always int16. A procedure argument may be
defined int8. Then it is read and written as int8 inside the function, but it is
passed as int16 on the data stack.
Arrays, e.g. text strings, and structs must be allocated dynamically and are
referenced by pointers. Dynamically allocated data may be moved around by
the system. The size of arrays is not part of the data type; it is part ot the data.
For simplicity, returning pointers from procedures is not supported.
int8[] arrays can be sent to and received from a device via 8-bit i/o opcodes.
int16[] arrays can be sent to and received from a device via 16-bit i/o opcodes.

Data Access
Data setters and getters for local and global variables are followed by a byte
which contains the variable reference. The variable reference consists of the
variable's index in the globals or locals list. Indexes always start at 0.
The local variables list is combined from the procedure's arguments and local
variables declarations as defined in the PROCDEF chunk.
The global variables are defined in the GLOBALS chunk.
The target system must construct a list of global variables' types from the
GLOBALS chunk, and a list of local variables' types for each procedure. Then
for every data accessor opcode it must compile the appropriate address or
offset to access the variable.
Data setters and getters for struct members are followed by one byte which
defines the struct type and one byte which defines the struct member by it's
index in the struct's data member list as defined in the TYPEDEFS chunk.
Data setters and getters for array items are not followed by inline data. Instead
there are 2 distinct opcodes for int8 and int16 arrays. The array variable itself
and the index are passed as arguments on the data stack.
There is no opcode intended to access random memory with a pointer.

K1-Bus Data I/O:
Devices on the K1-Bus are selected with the di opcode, which disables
interrupts and selects the device.
i/o instructions do not need to know the address of their device. All i/o on the
K1-Bus goes to the currently selected device. The i/o address, which is part of
the in and out opcodes, is only used to select registers in the device.
The system must provide 8-bit and 16-bit variants of each i/o opcode, except if
it does not support 16-bit i/o at all.
The I²C EEprom contains a flag in chunk DEVINFO for burst-mode block
output. Normally the K1-Bus timing chart defines a data hold time after the data
strobe goes inactive. Eventually the target system can increase i/o speed, if this
requirement is relaxed for block outputs. (inputs aren't affected anyway.) If bit

FASTBOUT is set in the DEVINFO chunk, then the target system can use block
i/o instructions with very little or no data hold time after strobe, only asserting
that the data is stable at least until when the i/o strobe goes inactive.

Abbreviations for arguments used in the bytecode descriptions:
Most arguments and return values are passed on the data stack. Sometimes
fixed arguments are passed inline after the opcode. This is indicated by green
text color:

Value on stack:
p = pointer: array, struct, address of variable
n = int16 value on stack
i = int16 value on stack used as index
a = int16 value on stack used as address
n1 = int16 value on stack with a reference for comment

Pointers on stack:
&b = pointer to int8 'byte' variable
&w = pointer to int16 'word' variable
&p = pointer to pointer variable: array or struct
&x = pointer to b, w or p variable
b[] = pointer to int8 array
w[] = pointer to int16 array

Inline argument:
T = inline int8: type ID as defined in the TYPEDEFS chunk
L = inline int8: label
b = inline int8: value
w = inline int16 value, high byte first
b[] = inline int8 array with 1 byte length prefix:

 used for procedure names and int8 array initializer
w[] = inline int16 array with 1 byte length prefix, high bytes first:

 used for int16 array initializer
L[] = inline int8 array with 1 byte length prefix: labels

Examples:
ati.b (b[] i -- &b) // get pointer to item in int8 array at index i

Input: pointer to int8 array
int16 index

Output: pointer to int8 data

lvar (b -- &x) // get pointer to local variable

Input: inline int8 index in local variables table
Output: pointer to int8, int16 or pointer variable

Opcodes Sorted by Code

Push immediate value:
$00 ival.b (b -- n) push int8 value, 0 … 255
$01 ival.w (w -- n) push int16 value, high byte first
$02 ival.b[] (b[] -- b[]) push length-prefixed int8 array
$03 ival.w[] (w[] -- w[]) push length-prefixed int16 array

Arithmetics & logics on stack:
$04 swap (n -- n) swap high byte and low byte of word
$05 get_lo (n -- n) get low byte of word
$06 get_hi (n -- n) get high byte of word
$07 cpl (n -- n) ~n
$08 not (n -- n) n ? 0 : 1
$09 msbit (n -- n) log2(n)

$0A add (n n -- n)
$0B sub (n1 n2 -- n) n1 – n2
$0C mul (n n -- n)
$0D div (n1 n2 -- n) n1 / n2
$0E rem (n1 n2 -- n) n1 % n2
$0F and (n n -- n)
$10 or (n n -- n)
$11 xor (n n -- n)
$12 sl (n1 n2 -- n) n1 << n2
$13 sr (n1 n2 -- n) n1 >> n2

$14 eq (n n -- n)
$15 ne (n n -- n)
$16 lt (n1 n2 -- n) n1 < n2
$17 le (n1 n2 -- n) n1 ≤ n2
$18 gt (n1 n2 -- n) n1 > n2
$19 ge (n1 n2 -- n) n1 ≥ n2

$1A min (n n -- n)

Access variables:
$1B lvar (b -- &x) get pointer to local variable
$1C gvar (b -- &x) get pointer to global variable
$1D ivar (p T b -- &x) get pointer to member b in struct p of type T

$1E ati.b (b[] i -- &b) get pointer to item in int8 array b[] at index i
$1F atiget.b (b[] i -- n) get item from int8 array b[] at index i
$20 atiset.b (n b[] i --) set item in int8 array b[] at index i
$21 lget.b (b -- n) get local int8 variable
$22 lset.b (n b --) set local int8 variable
$23 gget.b (b -- n) get global int8 variable
$24 gset.b (n b --) set global int8 variable
$25 iget.b (p T b -- n) get int8 member b in struct p of type T
$26 iset.b (n p T b --) set int8 member b in struct p of type T

$27 addgl.b (n &b --) add value to int8 variable etc.
$28 subgl.b (n &b --)
$29 andgl.b (n &b --)
$2A orgl.b (n &b --)
$2B peekpp.b (&b -- n) get value from int8 variable with post-incr.
$2C mmpeek.b (&b -- n) get value from int8 variable with pre-decr.

$2D ati.w (w[] i -- &w) get ptr. to item in int16 array w[] at index i
$2E atiget.w (w[] i -- n) get item from int16 array w[] at index i
$2F atiset.w (n w[] i --) set item in int16 array w[] at index i
$30 lget.w (b -- n) get local int16 variable
$31 lset.w (n b --) set local int16 variable
$32 gget.w (b -- n) get global int16 variable
$33 gset.w (n b --) set global int16 variable
$34 iget.w (p T b -- n) get int16 member b in struct p of type T
$35 iset.w (n p T b --) set int16 member b in struct p of type T

$36 addgl.w (n &w --) add value to int16 variable etc.
$37 subgl.w (n &w --)
$38 andgl.w (n &w --)
$39 orgl.w (n &w --)
$3A peekpp.w (&w -- n) get value from int16 variable with post-incr.
$3B mmpeek.w (&w -- n) get value from int16 variable with pre-decr.

$3C lget.p (b -- p) get pointer from local pointer variable
$3D gget.p (b -- p) get pointer from global pointer variable
$3E iget.p (p T b -- p) get pointer member b in struct p of type T
$3F set.p (p &p --) store pointer in pointer variable
$40 not.p (p -- n) test pointer for null

Arrays & memory:
$41 alloc.b (n -- b[]) allocate int8 array, cleared with 0
$42 alloc.w (n -- w[]) allocate int16 array, cleared with 0
$43 alloc.S (T -- p) allocate struct of type T, cleared with 0

$44 count.b (b[] -- n) get item count in int8 array
$45 count.w (w[] -- n) get item count in int16 array

$46 copy.b (b[] i1 b[] i2 n) copy array b[i1 to i1+n-1] to b[i2 to i2+n-1]
$47 copy.w (w[] i1 w[] i2 n) copy array w[i1 to i1+n-1] to w[i2 to i2+n-1]

$48 dispose (p --) dispose array or struct

Input and output to the K1-Bus:
$49 in.b (a -- n) input int8 from i/o address a
$4A out.b (n a --) output int8 to i/o address a
$4B bin.b (b[] i n a --) input int8 array b[i to i+n-1] from i/o addr. a
$4C bout.b (b[] i n a --) output int8 array b[i to i+n-1] to i/o address a

$4D in.w (a -- n) input int16 from i/o address a
$4E out.w (n a --) output int16 to i/o address a
$4F bin.w (w[] i n a --) input int16 array w[i to i+n-1] from i/o addr. a
$50 bout.w (w[] i n a --) output int16 array w[i to i+n-1] to i/o addr. a

$51 readi2c (a b[] i n --) read b[i to i+n-1] from I²C EEprom addr. a++
$52 writei2c (a b[] i n --) write b[i to i+n-1] to I²C EEprom address a++

Interrupts:
$53 di (--) disable interrupts & select device
$54 ei (--) deselect device & enable interrupts
$55 timer (--) call the system timer handler
$56 wait (--) halt CPU & wait for interrupt
$57 systemtime (-- n) get low int16 of system time; approx. in ms

Code Flow:
$58 jp (L --) jump to label L
$59 jp0 (L n --) jump to label L if n is FALSE
$5A jp1 (L n --) jump to label L if n is TRUE
$5B and0 (L n --) keep n and jump to L if n is FALSE,

else drop n & don't jump
$5C or1 (L n --) keep n and jump to L if n is TRUE,

else drop n & don't jump
$5D switch (L[] n --) jump to label L[n]

$5E call (b --) call procedure with proc ID b
$5F ret (--) return from procedure

$60 label (L --) pseudo opcode: define label L here.

Discussion of all Bytecode Opcodes

Push immediate value:

ival.b (b -- n) push int8 value
ival.w (w -- n) push int16 value

Push immediate value on the data stack. The value follows inline after the
opcode.
The int16 value is stored high byte first. If the target system prefers it the
other way then the bytecode loader may just swap the two bytes. The int8
value is in range 0 to 255, int16 in range 0 to 65535.

ival.b[] (b[] -- b[]) push length-prefixed int8 array; e.g. a text string
ival.w[] (w[] -- w[]) push length-prefixed int16 array

Push an array of bytes (int8) or words (int16) on the data stack. The byte
or word array follows inline after the opcode and is preceded by a 1-byte
length prefix. Words in the int16 array are stored high bytes first and may
be swapped by the bytecode loader if required.
When this opcode is executed, the system should dynamically allocate the
required amount of memory and initialize it with the inline data. The array
must be disposable with the dispose opcode, but it is considered const
and should not be overwritten by the driver. These opcodes are preferably
used for initialization of tables in a disposable procedure.

Arithmetics and logics on stack:

add (n1 n2 -- n) n1 + n2
sub (n1 n2 -- n) n1 – n2
mul (n1 n2 -- n) n1 * n2
div (n1 n2 -- n) n1 / n2
rem (n1 n2 -- n) n1 % n2

The 5 basic arithmetic operations.
Note the order of arguments for sub, div and rem.
Systems with unusual int16 size must mask the result of add, sub and
mul and argument n1 in div and rem with $FFFF.
n = (n1 + n2) & $FFFF // add
n = (n1 & $FFFF) / n2 // div
Note: mul, div and rem may be longish operations on small systems and
should be used only if neccessary. Multiplication and division can often be
replaced by bit shifting with sl and sr, remainder by masking with and.
Therefore it is recommended to make all buffers 2^N in size.

and (n n -- n)
or (n n -- n)
xor (n n -- n)

The 3 basic bit operations.

sl (n1 n2 -- n) n1 << n2
sr (n1 n2 -- n) n1 >> n2

Shift bits left or right, padding with 0. Shift distance n2 is masked with $0F.
Systems with unusual int16 size must mask the value before sr or after sl
with $FFFF.
n = (n1 << (n2&$F)) & $FFFF // sl
n = (n1 & $FFFF) >> (n2&$F) // sr

eq (n1 n2 -- n) n1 == n2
ne (n1 n2 -- n) n1 != n2
lt (n1 n2 -- n) n1 < n2
le (n1 n2 -- n) n1 ≤ n2
gt (n1 n2 -- n) n1 > n2
ge (n1 n2 -- n) n1 ≥ n2

The 6 basic compare operators.
The result is 0 for FALSE and 1 for TRUE.

get_lo (n -- n) get low byte of word
get_hi (n -- n) get high byte of word

Get lower 8 bits resp. upper 8 bits from int16 value.
The result is in range 0 to 255:
n = n & $FF // get_lo
n = (n>>8) & $FF // get_hi

cpl (n -- n)

Bitwise complement of value.
Systems with unusual int16 size must mask the result with $FFFF.
n = ~n & $FFFF

not (n -- n) n ? 0 : 1

Boolean negation. The result is 0 for FALSE and 1 for TRUE.

swap (n -- n)

Swap high and low byte of word:
n = (n & $FF) << 8 + (n>>8) & $FF

min (n1 n2 -- n) n1<n2 ? n1 : n2

Return the smaller value of n1 and n2.

msbit (n -- n) log2(n)

Determine the most significant '1' bit in n.
The result is in range 0 to 15. The result for $0000 and for $0001 is 0.

Access variables:

lvar (b -- &x) get pointer to local variable

Get pointer to a local variable, which may be an int8, int16 or a pointer
for arrays or structs.
The inline byte is the index in the list of all local variables. This list is
combined from the function arguments and variables defined inside the
function. Indexes start at 0. See description of the PROCDEF chunk.

gvar (b -- &x) get pointer to global variable

Get pointer to a global variable, which may be an int8, int16 or a pointer
for arrays or structs.
The inline byte is the index in the list of all global variables as defined in
the GLOBALS chunk. Indexes start at 0.

ivar (p T b -- &x) get pointer to member b in struct p of type T

Get pointer to a data member of a struct, which may be an int8, int16 or
a pointer for an array or struct.
The inline byte b is the index in the list of data members as defined in the
TYPEDEFS chunk for the struct data type T. Member indexes start at 0.
Note: All opcodes which return a reference to a variable in allocted
memory must be followed by the consumer opcode immediately.

ati.b (b[] i -- &b) get pointer to item in byte array b[] at index i
ati.w (w[] i -- &w) get pointer to item in word array w[] at index i

Get pointer to data in array at index i. Indexes start at 0. There separate
opcodes for int8 and int16 arrays.
Note: All opcodes which return a reference to a variable in allocted
memory must be followed by the consumer opcode immediately.

atiget.b (b[] i -- n)
atiget.w (w[] i -- n)
atiset.b (n b[] i --)
atiset.w (n w[] i --)

Read or write data to array at index i. Indexes start at 0. There are getters
and setters for int8 and int16.
Note the 'reverse order' of arguments of the atiset opcodes.

lget.b (b -- n)
lget.w (b -- n)
lget.p (b -- p)
lset.b (n b --)
lset.w (n b --)

Read or write data to local variable. There are getters and setters for int8
and int16. For pointers only a getter is defined. For the setter use lvar.p
plus set.p.
The inline byte is the index in the list of all local variables. This list is
combined from the function arguments and local variables. Indexes start
at 0. See description of the PROCDEF chunk.
Note the 'reverse order' of arguments of the lset opcodes.

gget.b (b -- n)
gget.w (b -- n)
gget.p (b -- p)
gset.b (n b --)
gset.w (n b --)

Read or write data to global variable. There are getters and setters for
int8 and int16. For pointers only a getter is defined. For the setter use
gvar.p plus set.p.
The inline byte is the index in the list of all global variables as defined in
the GLOBALS chunk. Indexes start at 0.
Note the 'reverse order' of arguments of the gset opcodes.

iget.b (p T b -- n)
iget.w (p T b -- n)
iget.p (p T b -- p)
iset.b (n p T b --)
iset.w (n p T b --)

Read or write data member in struct of type T. There are getters and
setters for int8 and int16 data members. For pointer data members only
a getter is defined. For the setter use ivar.p plus set.p.
The inline byte b is the index in the list of data members as defined in the
TYPEDEFS chunk for the struct data type T. Member indexes start at 0.
Note the 'reverse order' of arguments for the iset opcodes.

set.p (p &p --)

Store pointer in pointer variable. Pointers are int16 on small systems
and int32 on most others. Setters for pointer variables must be combined
from lvar, gvar or ivar and set.p.
Note the 'reverse order' of arguments.

not.p (p -- n) test pointer for null

Test pointer for null.
The result is 1 for TRUE (p is null) and 0 for FALSE.
Note: Bytecode contains no opcode to compare two pointers, only not.p to
test a pointer for null.

peekpp.b (&b -- n) get value from int8 variable with post-increment
peekpp.w (&w -- n) get value from int16 variable with post-increment
mmpeek.b (&b -- n) get value from int8 variable with pre-decrement
mmpeek.w (&w -- n) get value from int16 variable with pre-decrement

Read and post-increment or pre-decrement and read int8 or int16
variable which is passed by reference.

addgl.w (n &w --) add value to int16 variable etc.
subgl.w (n &w --)
andgl.w (n &w --)
orgl.w (n &w --)
addgl.b (n &b --) add value to int8 variable etc.
subgl.b (n &b --)
andgl.b (n &b --)
orgl.b (n &b --)

Modify int8 or int16 variable which is passed by reference. Only a small
subset of arithmetic operartions is supported for the 'modify' opcodes.
Note the 'reverse order' of arguments.

Arrays and memory:

alloc.b (n -- b[]) allocate int8 array, cleared with 0
alloc.w (n -- w[]) allocate int16 array, cleared with 0
alloc.S (T -- p) allocate struct of type T, cleared with 0

Allocate int8 or int16 array with n items or a struct of type T. Type T is
passed inline in 1 byte and refers to the type ID as defined in the
TYPEDEFS chunk. The newly allocated memory is cleared with 0.

dispose (p --) dispose allocated data

Dispose memory referenced by pointer p, either an array or a struct.
If a struct itself contains allocated data, this is not automagically disposed
too. It must be actively disposed by the program before disposing the
enclosing struct.
Pointer p may be null.
Note: Do not dispose data which you have not allocated yourself; e.g.
arguments to a procedure. This will likely mix up the memory
management of the host system. See 'Notes on dynamic memory'.
dispose is mostly used to destroy allocated local variables before the
procedure returns.

count.b (b[] -- n) get item count
count.w (w[] -- n) get item count

Get number of items in int8 or int16 array.

copy.b (b[] i1 b[] i2 n) copy b[i1 to i1+n-1] to b[i2 to i2+n-1]
copy.w (w[] i1 w[] i2 n) copy w[i1 to i1+n-1] to w[i2 to i2+n-1]

Copy range of bytes or words from one array to another. The first array
and index i1 are the source while the second array and i2 are the
destination. The number of bytes or words to copy is n.
Indexes and n must be in range 0 to array.count; n may be 0.
To support cyclic buffers, i1+n or i2+n may exceed beyond the end of the
buffer and will wrap around to the start of the buffer during copy.
If source and destination buffer are the same, then copy must copy data
with incrementing index, so that copy can be used if end of destination
and start of source overlap. (copy to lower address.)
'copy' cannot be used if destination start and source end overlap.
Note: in a cyclic buffer source and destination can overlap at both ends!
In general, copy will only be used to copy between different buffers, so
this limitation to copy seems acceptable and simplifies implementation.

Input & output data to the K1-Bus:
Note: i/o is always done to the currently selected device. The address a is only
used to select registers etc. in the device. To select the device, interrupts must
be disabled with di.

K1-Bus i/o and EEprom access is only possible while interrupts are disabled!

A small system may implement an 8 bit wide K1-Bus only. Then the bytecode
loader can check bit WIDEDEV in chunk DEVINFO of the driver EEprom to see
whether this device requires a 16-bit bus and reject the device.

in.b (a -- n) input int8 from i/o address a
in.w (a -- n) input int16 from i/o address a
out.b (n a --) output int8 to i/o address a
out.w (n a --) output int16 to i/o address a

Input or output one int8 byte or one int16 word to or from the device.
in.b must clear the upper byte of n to 0.

bin.b (b[] i n a --) input int8 array b[i to i+n-1] from i/o address a
bout.b (b[] i n a --) output int8 array b[i to i+n-1] to i/o address a
bin.w (w[] i n a --) input int16 array w[i to i+n-1] from i/o address a
bout.w (w[] i n a --) output int16 array w[i to i+n-1] to i/o address a

Input or output block of int8 or int16 data to or from the device.
i and n must be in range 0 ≤ i ≤ i+n ≤ array.count. n may be 0.
A device may support a faster 'burst' mode for output. This is declared in
bit FASTBOUT in the DEVINFO chunk.

readi2c (a b[] i n -- n) read int8 array b[i to i+n-1] from I²C EEprom
writei2c (a b[] i n -- n) write int8 array b[i to i+n-1] to I²C EEprom

These opcodes allow to read and write all data in the currently selected
driver EEprom starting at address a.
i and n must be in range 0 ≤ i ≤ i+n ≤ array.count. n may be 0.
In general, these opcodes are not needed and should be used rarely,
because i/o to the EEprom via the I²C bus is slow and blocking. They are
provided so that utility functions can be written in bytecode.

Returns error code: same codes as for BlockDevice

0 ok
1 parameter error / function not supported
2 io error
3 device not responding / device not present

Interrupts:

ei (--) enable interrupts
di (--) disable interrupts

Enable or disable interrupts.
Must not be called in irpt() and init() because these functions are called
with interrupts disabled and device selected and must keep interrupts
disabled and their device selected.
Note: Disabling interrupts with di also selects the device for i/o operations.
All i/o opcodes work on the currently selected device! The bytecode
loader must store the device's actual i/o address with the di opcode.

wait (--) halt CPU & wait for interrupt

Halt the CPU and wait for an interrupt from this or any other device.
Interrupts must be enabled when wait is executed.
wait may resume erroneously.
wait might be used in a block device driver after issuing a command to the
drive and waiting for the drive to become ready for i/o, so that during
motor-on or seek other interrupts are served.
Note: Assuming that there's a timer interrupt, this will provide a timeout for
the wait opcode itself. The driver can use opcode systemtime to detect a
device timeout.

systemtime (-- n) get low int16 of system time

Get the low int16 word of the current system time which should be
roughly in msec. Overflows roughly once a minute. Provided for device
timeout measurements after opcode wait.

timer (--) call the system timer handler

A device may provide a timer interrupt which can be used as the system's
time base.
If the timer interrupt was enabled during device initialization by a call to
systemtimer(), then the interrupt handler procedure irpt() must call the
timer opcode once for every timer interrupt. The target system will
implement the timer opcode to perform all required actions.
If the system provides it's own timer interrupt, then there is no need to
implement this opcode.

Code flow:

label (L --) pseudo opcode: define label L here
jp (L --) jp to label L
jp0 (L n --) jp to label L if n is FALSE
jp1 (L n --) jp to label L if n is TRUE
and0 (L n --) keep n and jp to L if n is FALSE, else drop n & don't jump
or1 (L n --) keep n and jp to L if n is TRUE, else drop n & don't jump

Labels are 1-byte numbers following inline after a jump opcode or the
label definition opcode. The bytecode loader collects all labels while
loading the bytecode of a procedure and remembers their actual position.
Finally it updates the addresses in all jump opcodes.
The jump opcodes jp, jp0 and jp1 are used to construct loops and
conditional branches, e.g. for instructions like IF, ELSE, WHILE or LOOP,
and the pruning operator '?:'.
Opcode and0 is used for pruning boolean operator AND.
Opcode or1 is used for pruning boolean operator OR.
Pruning AND and OR operations only yield only 0 or 1 if their input values
are only 0 or 1. Other non-zero 'TRUE' values are left on the stack 'as is'.

switch (L[] n --) jump to label L[n]

The switch opcode is followed by a length-prefixed list of labels. Labels
are 1-byte numbers and refer to the labels defined with the label pseudo
opcode.
If n is inside the size of the list, then jump to label L[n], else resume after
the switch opcode.

call (? n -- ?) call procedure

Call procedure with Proc ID n. The procedure ID was defined in the
PROCDEF chunk. Procedures can only be called when they are already
known to the bytecode loader. This means that they must be defined
before any caller.
Arguments and return value depend on the called procedure and are
indirectly known to the bytecode loader.

ret (? --) return from procedure

The return opcode must only occur once at the end of a procedure. When
ret is executed, the appropriate return value for the current function must
be on the stack.
The ret opcode indicates the end of code to the bytecode loader.
The bytecode loader must generate code which preserves the return
value – if there is one, while it removes all local variables and arguments

from the stack before it returns. Both informations are indirectly known to
the bytecode loader from the header info in the PROCDEF chunk.
Allocated local variables, i.e. arrays and structs, must have been already
disposed by the program so that ret effectively only needs to adjust the
data stack pointer.

Notes

Notes on dynamic memory
There are several methods to define ownership of memory. Bytecode has been
designed and restricted to be agnostic of the actual method used by a system.

For this reason Bytecode does not support returning arrays or structs from
procedures.

Bytecode duplicates and forgets array and struct pointers without informing
the system. It is always assumed that the original primary pointer will keep the
object allocated and thus any secondary copy of the pointer remains valid.

Programmers should clearly distinguish between variables with primary
pointers and variables with secondary pointers. Primary pointers are returned
by alloc and ival and when stored in a variable this holds the primary pointer.
Only primary pointer variables must be disposed when destroyed.

Secondary pointers are created by copying a primary or a secondary pointer;
mostly with a variant of get.p.

Arguments to procedures must be secondary pointers; don't pass an ival or an
allocated array or struct directly; no one will dispose it!

Do not store a secondary pointer into a primary pointer variable!
Do not store a primary pointer into a secondary pointer variable!
Do not store a primary pointer into a procedure argument variable!

Notes on systems with movable dynamic memory
Most small systems have no memory management unit and cannot use virtual
addresses. In order to reclaim and reuse memory they may move memory
blocks to merge gaps between them, e.g. in a garbage collection.

Bytecode assumes that pointers to arrays and structs remain valid and don't
need to be tracked. The usual approach to solve this, is to use handles:
pointers into a special block of pointers which point to the actual data. The
pointers in this block itself are not moved and so Bytecode can use pointers to
those. The system's implementation of the array and struct opcodes will reflect
this.

Two opcodes return a reference to a variable in dynamic memory: ivar and ati.
There's a risk that this pointer becomes invalid before it is consumed by addgl,
peekpp, set.p or similar. This can happen, if some other code, which triggers a
garbage collection, is executed between the producer and the consumer
opcode.

Therefore Bytecode does not allow memory allocation and disposal in the
interrupt handler function Irpt(). So interrupts are out of the way.

If the system also uses some kind of threads, then it must assert that no thread
switching occurs between the producer and the consumer opcode. This can be
done by either switching threads only after certain opcodes, e.g. after branches,
call and ret, or by switching after all opcodes and skip the dispatcher test only
after ivar and ati.

Switching threads at arbitrary machine code positions is probably not possible
in systems with movable dynamic memory, or requires lots of interrupts on and
off.

Therefore all opcodes which return a reference to a variable in allocated
memory, i.e. ivar and ati, must be followed by the consumer opcode directly.
For this reason all opcodes which read or write to variables in ram always take
the reference to the variable as their last argument.

Notes on systems with unusual word size
Most systems will implement int16 words with 16-bit words. If a system uses an
unusual word size then it must mask off the excess bits in the results or
operands of some opcodes. This is noted in the description of these opcodes.

If a program creates overflow beyond 16 bits, then programmers must be
aware that values on the stack might have excess bits set beyond the 16th bit.
But for the most common candidates Bytecode requires masking off these bits,
so this should only rarely be a problem.

Notes on using same size for int8 and int16
int8 is defined to be at least 8 bits wide. The use of int8 instead of int16 in the
driver code is merely a hint to the bytecode loader, that 8 bits are sufficient, but
the system may use a larger data type for it.

Small 8-bit systems will probably use one 8-bit byte for int8, but systems with a
16-bit CPU or larger may want to implement int8 with the same size as int16.
This may lead to faster code by avoiding misaligned data access, and padding
with 0 when reading data from int8 variables, and eliminates some of the int8
opcodes in range $1E to $2C.

16-bit systems with 8-bit bytes
A 16-bit system with 8 bits per byte may use two bytes for all int8 variables
same as for int16, but will still want to use one byte per item in int8 arrays.

Now we have a problem with opcodes which return or take a reference to an
int8 value as argument or result. These are opcodes lget.b, gget.b, iget.b and

ati.b (producer) and opcodes addgl.b to mmpeek.b (consumer). They always
occur in pairs of producer/consumer. They are now expected to produce or
return a reference to 2-byte data, except for ati.b, which will still return a
reference to 1-byte data. This must be handled properly:

• Opcodes ati, atiget and atiset are still different for int8 and int16.

• Opcodes for bytes ($21 to $2C) and words ($30 to $3B) can be merged.

• The bytecode loader must detect opcode ati.b and use the 1-byte variant of
opcodes addgl.b to mmpeek.b for the following consumer opcode. This case is
very unusual, though. It only happens for read-modify-write to int8 array items.

Systems with 16-bit bytes
Though very unusual, a system may have bytes of 16 bits (or larger). Then all
variable access opcodes for bytes ($1E to $2C) and words ($2D to $3B) are
the same and can be joined.

For an example of a pure 16-bit CPU see http://k1.spdns.de/Develop/Hardware/
K1-Computer/K1-CPU/.

Notes on Code Optimization
Bytecode is designed to represent fairly optimal code. Some points for
optimizations are left in favour of less opcodes.

In general, performance can be increased by combining frequently occuring
code pairs (or triples…) into a new single opcode. Bytecode contains numerous
opcodes which actually already combine two functions; e.g. lget.b is a
combination of lvar plus get.b.

Examples:
Combine ival plus operator, e.g. ival.b plus add to 'addi.b' (add immediate).

Combine ival plus i/o opcode: the last argument is always the i/o address.

http://k1.dyndns.org/Develop/Hardware/K1-Computer/K1-CPU/
http://k1.dyndns.org/Develop/Hardware/K1-Computer/K1-CPU/

Change Log
1.02 Changed arguments for functions which take blocks from a, e to i, n.

Added min, msbit back in, shifted following opcodes.

1.03 Added notes on using same size for int8 and int16.

1.05 Added not.p, removed swapwithvar and call_kill.

1.06 Removed tor, fromr, drop and drop.p by integrating them into ret.

1.07 Replaced 'subdev' int argument in device procs with a struct reference.
Added requirement to implicitely add di and ei for a call to irpt().
Combined chunk 5 and 6: copyright message.
Removed ati.p, atiget.p, alloc.p and count.p.

1.08 Switched from call proc by name to call proc by ID.

1.09 Minor rework of the last rework.

1.10 Revised proc IDs of public procedures.

1.11 Revised argument order of readi2c and writei2c.

1.12 Changed arguments for functions gets, puts, readblocks and writeblocks
from i, n to a, e.

To Do
COMMANDs: Must be one function currently. Should support subroutines.

VIDEO devices

AUDIO devices

Keyboard devices

Pointer devices

